首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Induction of antitumor immunity involves the presence of both CD8(+) CTLs and CD4(+) Th cells specific for tumor-associated Ags. Attempts to eradicate cancer by adoptive T cell transfer have been limited due to the difficulty of generating T cells with defined Ag specificity. The current study focuses on the generation of CTL and Th cells against the tumor-associated Ag HER2 using autologous dendritic cells (DC) derived from CD34(+) hematopoietic progenitor cells which have been retrovirally transduced with the human epidermal growth factor receptor 2 (HER2) gene. HER2-transduced DC elicited HER2-specific CD8(+) CTL that lyse HER2-overexpressing tumor cells in context of distinct HLA class I alleles. The induction of both HLA-A2 and -A3-restricted HER2-specific CTL was verified on a clonal level. In addition, retrovirally transduced DC induced CD4(+) Th1 cells recognizing HER2 in context with HLA class II. HLA-DR-restricted CD4(+) T cells were cloned that released IFN-gamma upon stimulation with DC pulsed with the recombinant protein of the extracellular domain of HER2. These data indicate that retrovirally transduced DC expressing the HER2 molecule present multiple peptide epitopes and subsequently elicit HER2-specific CTL and Th1 cells. The method of stimulating HER2-specific CD8(+) and CD4(+) T cells with retrovirally transduced DC was successfully implemented for generating HER2-specific CTL and Th1 clones from a patient with HER2-overexpressing breast cancer. The ability to generate and expand HER2-specific, HLA-restricted CTL and Th1 clones in vitro facilitates the development of immunotherapy regimens, in particular the adoptive transfer of both autologous HER2-specific T cell clones in patients with HER2-overexpressing tumors without the requirement of defining immunogenic peptides.  相似文献   

2.
The CD8 coreceptor enhances T cell function by stabilizing the TCR/peptide/MHC complex and/or increasing T cell avidity via interactions with the intracellular kinases Lck and LAT. We previously reported a CD4(+) T cell (TIL 1383I), which recognizes the tumor-associated Ag tyrosinase in the context of HLA-A2. To determine whether CD8 independent tumor cell recognition is a property of the TCR, we used retroviral transduction to express the TIL 1383I TCR in the CD8(-) murine lymphoma, 58 alpha(-)/beta(-). Immunofluorescent staining of TCR-transduced cells with human TCR V beta subfamily-specific and mouse CD3-specific Abs confirmed surface expression of the transferred TCR and coexpression of mouse CD3. Transduced effector cells secreted significant amounts of IL-2 following Ag presentation by tyrosinase peptide-pulsed T2 cells as well as stimulation with HLA-A2(+) melanoma lines compared with T2 cells alone or HLA-A2(-) melanoma cells. Further analysis of TCR-transduced clones demonstrated a correlation between T cell avidity and cell surface expression of the TCR. Therefore, the TIL 1383I TCR has sufficient affinity to mediate recognition of the physiologic levels of Ag expressed by tumor cells in the absence of CD8 expression.  相似文献   

3.
Recently, we have demonstrated that tumor-specific CD4+ Th cell responses can be rapidly induced in advanced melanoma patients by vaccination with peptide-loaded monocyte-derived dendritic cells. Most patients showed a T cell reactivity against a melanoma Ag 3 (MAGE-3) peptide (MAGE-3(243-258)), which has been previously found to be presented by HLA-DP4 molecules. To analyze the functional and specificity profile of this in vivo T cell response in detail, peptide-specific CD4+ T cell clones were established from postvaccination blood samples of two HLA-DP4 patients. These T cell clones recognized not only peptide-loaded stimulator cells but also dendritic cells loaded with a recombinant MAGE-3 protein, demonstrating that these T cells were directed against a naturally processed MAGE-3 epitope. The isolated CD4+ Th cells showed a typical Th1 cytokine profile upon stimulation. From the first patient several CD4+ T cell clones recognizing the antigenic peptide used for vaccination in the context of HLA-DP4 were obtained, whereas we have isolated from the second patient CD4+ T cell clones which were restricted by HLA-DQB1*0604. Analyzing a panel of truncated peptides revealed that the CD4+ T cell clones recognized different core epitopes within the original peptide used for vaccination. Importantly, a DP4-restricted T cell clone was stimulated by dendritic cells loaded with apoptotic or necrotic tumor cells and even directly recognized HLA class II- and MAGE-3-expressing tumor cells. Moreover, these T cells exhibited cytolytic activity involving Fas-Fas ligand interactions. These findings support that vaccination-induced CD4+ Th cells might play an important functional role in antitumor immunity.  相似文献   

4.
Ag-specific CD8+ CTL are crucial for effective tumor rejection. Attempts to treat human malignancies by adoptive transfer of tumor-reactive CTL have been limited due to the difficulty of generating and expanding autologous CTL with defined Ag specificity. The current study examined whether human CTL can be generated against the tumor-associated Ag HER2 using autologous dendritic cells (DC) that had been genetically engineered to express HER2. DC progenitors were expanded by culturing CD34+ hemopoietic progenitor cells in the presence of the designer cytokine HyperIL-6. Proliferating precursor cells were infected by a retroviral vector encoding the HER2 Ag and further differentiated into CD83+ DC expressing high levels of MHC, adhesion, and costimulatory molecules. Retroviral transduction of DC resulted in the expression of the HER2 molecule with a transduction efficiency of 15%. HER2-transduced DC correctly processed and presented the Ag, because HLA-A*0201-positive DC served as targets for CTL recognizing the HLA-A*0201-binding immunodominant peptide HER2(369-377). HER2-transduced DC were used as professional APCs for stimulating autologous T lymphocytes. Following repetitive stimulation, a HER2-specific, HLA-A*0201-restricted CTL line was generated that was capable of lysing HLA-A*0201-matched tumor cells overexpressing HER2. A CD8+ T cell clone could be generated that displayed the same specificity pattern as the parenteral CTL line. The ability to generate and expand HER2-specific, MHC class I-restricted CTL clones using HER2-transduced autologous DC in vitro facilitates the development of adoptive T cell transfer for patients with HER2-overexpressing tumors without the requirement of defining immunogenic peptides.  相似文献   

5.
p97 is a cell surface glycoprotein expressed at high levels in most human melanomas but present only in trace amounts in normal adult tissues. We are interested in exploring the possibility of using recombinant vaccinia virus to express a specific tumor-associated antigen as a vaccine against human cancer. To this end, we constructed a recombinant virus, v-p97NY, which contains the entire coding sequence for p97 under the control of the vaccinia virus 7.5K promoter. Upon infection of tissue culture cells, v-p97NY expressed high levels of a membrane-bound glycoprotein immunoreactive with a p97-specific monoclonal antibody. Immunization of mice with this recombinant elicited high-titered antibodies against p97. Spleen cells isolated from these mice proliferated in vitro when stimulated either with purified p97 protein or with syngeneic cells expressing p97 antigen. Delayed-type hypersensitivity was also observed in immunized mice after challenge with p97-expressing cells. These findings indicate the potential usefulness of v-p97NY and similar recombinants in tumor immunotherapy.  相似文献   

6.
Human adenovirus (HAdV) infection is a frequent and potentially severe complication following allogeneic stem cell transplantation in children. Because treatment with antiviral drugs is often ineffective, adoptive transfer of donor-derived HAdV-specific T cells able to control viral replication of HAdV of multiple serotypes may be an option for therapy. In healthy donors, predominantly HAdV-specific T cells expressing CD4 are detected. In this study, a preclinical in vitro model was used to measure the antiviral effect of HAdV-specific CD4+ T cells. CD4+ HAdV-specific T cell clones restricted by HLA class II molecules were generated and most of these clones recognized conserved peptides derived from the hexon protein. These cross-reactive T cell clones were able to control viral replication of multiple serotypes of HAdV in EBV-transformed B cells (B-LCL), melanoma cells (MJS) and primary bronchial epithelial cells through cognate interaction. The HAdV-specific CD4+ T cell clones were able to specifically lyse infected target cells using a perforin-dependent mechanism. Antigenic peptides were also presented to the CD4+ T cell clones when derived from endogenously produced hexon protein. Together, these results show that cross-reactive HAdV-specific CD4+ T cells can control replication of HAdV in vitro and provide a rationale for the use of HAdV-specific T cells in adoptive immunotherapy protocols for control of life-threatening HAdV-infections in immunocompromised patients.  相似文献   

7.
Targeting recycling endocytic receptors with specific Abs provides a means for introducing a variety of tumor-associated Ags into human dendritic cells (DCs), culminating in their efficient presentation to T cells. We have generated a human mAb (B11) against the mannose receptor that is rapidly internalized by DCs through receptor-mediated endocytosis. By genetically linking the melanoma Ag, pmel17, to Ab B11, we obtained the fully human fusion protein, B11-pmel17. Treatment of DCs with B11-pmel17 resulted in the presentation of pmel17 in the context of HLA class I and class II molecules. Thus, potent pmel17-specific T cells were cytotoxic toward gp100(+) HLA-matched melanoma targets, but not HLA-mismatched melanoma or gp100(-) nonmelanoma tumor lines. Importantly, competitive inhibition of lysis of an otherwise susceptible melanoma cell line by cold targets pulsed with known gp100 CD8 T cell epitopes as well as a dose-dependent proliferative response to Th epitopes demonstrates that DCs can process targeted Ag for activation of cytotoxic as well as helper arms of the immune response. Thus, the specific targeting of soluble exogenous tumor Ag to the DC mannose receptor directly contributes to the generation of multiple HLA-restricted Ag-specific T cell responses.  相似文献   

8.
The taxol resistance gene TRAG-3 was initially isolated from cancer cell lines that became resistant to taxol in vitro. TRAG-3 is a cancer germline Ag expressed by tumors of different histological types including the majority of melanoma, breast, and lung cancers. In the present study, we report that patients with stage IV melanoma and breast cancers developed spontaneous IFN-gamma-producing CD4+ T cell responses against a single immunodominant and promiscuous peptide epitope from TRAG-3 presented in the context of multiple HLA-DR molecules. The TRAG-3-specific CD4+ T cells and clones were expanded in vitro and recognized not only peptide pulsed APCs but also autologous dendritic cells (DCs) loaded with the TRAG-3 protein. All stage IV melanoma patients with TRAG-3-expressing tumors developed spontaneous CD4+ T cell responses against TRAG-3, demonstrating its strong immunogenicity. None of these patients had detectable IgG Ab responses against TRAG-3. TCRbeta gene usage studies of TRAG-3-specific CD4+ T cell clones from a melanoma patient and a normal donor suggested a restricted TCR repertoire in patients with TRAG-3-expressing tumors. Altogether, our data define a novel profile of spontaneous immune responses to cancer germline Ag-expressing tumors, showing that spontaneous TRAG-3-specific CD4+ T cells are directed against a single immunodominant epitope and exist independently of Ab responses. Because of its immunodominance, peptide TRAG-3(34-48) is of particular interest for the monitoring of spontaneous immune responses in patients with TRAG-3-expressing tumors and for the development of cancer vaccines.  相似文献   

9.
The combination of staphylococcal enterotoxin B (SEB) and anti-p97 x anti-CD3 bispecific antibody (bsAb) cures 60%-80% of mice with established pulmonary metastases of the syngeneic p97+ murine melanoma, CL62. We investigated the ability of cured mice to generate protective antitumor immunity. In tumor rechallenge experiments, CL62-cured mice developed protective immunity against rechallenge with CL62. The majority of mice also rejected the p97-negative parental cell line, K1735, indicating an immune response to tumor antigens common to both cell lines that were not bsAb-targeted. A significant humoral response developed against p97 antigen, but not against other antigens common to both CL62 and K1735. That the majority of cured mice nevertheless rejected K1735 suggests that tumor immunity is not antibody-dependent. Evidence of cellular immunity was obtained from the results of delayed-type hypersensitivity, proliferation and cytotoxicity assays, which revealed the presence of tumor-specific memory in bsAb-treated, CL62-cured mice. CD8+ T cells from cured, but not control mice were able to lyse tumor; however, memory CD4 cells had no cytolytic function. In vivo, however, both CD4 and CD8 T cells were required for effective protective immunity. These studies demonstrate that treatment with SEB and bsAb not only confers passive immune effects of tumor eradication, but also actively promotes the generation of a host antitumor immune response.  相似文献   

10.
The tumor Ag SSX-2 (HOM-MEL-40) was found by serological identification of Ags by recombinant expression cloning and was shown to be a cancer/testis Ag expressed in a wide variety of tumors. It may therefore represent a source of CD8(+) T cell epitopes useful for specific immunotherapy of cancer. To identify potential SSX-2-derived epitopes that can be recognized by CD8(+) T cells, we used an approach that combined: 1) the in vitro proteasomal digestion of precursor peptides overlapping the complete SSX-2 sequence; 2) the prediction of SSX-2-derived peptides with an appropriate HLA-A2 binding score; and 3) the analysis of a tumor-infiltrated lymph node cell population from an HLA-A2(+) melanoma patient with detectable anti-SSX-2 serum Abs. This strategy allowed us to identify peptide SSX-2(41-49) as an HLA-A2-restricted epitope. SSX2(41-49)-specific CD8(+) T cells were readily detectable in the tumor-infiltrated lymph node population by multimer staining, and CTL clones isolated by multimer-guided cell sorting were able to lyse HLA-A2(+) tumor cells expressing SSX-2.  相似文献   

11.
Murine L cells expressing the products of transfected HLA-DR1 genes functioned as APC for two influenza-specific, human Th cell clones with comparable efficiency to a DR1-expressing human lymphoblastoid cell line. In order to investigate the restriction specificity of the two Th clones, a transfectant expressing the species-mismatched MHC class II dimer DR1:I-E was tested as an APC. Both T cells showed no loss of Ag sensitivity due to substitution of the murine chain. One of the Th clones, TLC 72, showed even greater degeneracy by responding to Ag in the context of I-Ek. Taking into account the lower level of MHC class II expression on the I-Ek transfectant, there is remarkably little loss of efficiency of Ag-induced T cell activation due to the substitution of I-E for DR as restriction element. The Ag-specific responses of both clones were inhibited by anti-CD4 antibody when DR-transfected L cells or human lymphoblastoid cells were used as APC. This inhibition was also seen when Ag was presented to TLC72 by the I-Ek-expressing transfectant. Whether this inhibition is the result of negative signaling or of blocking an interaction between human CD4 and I-Ek is discussed. Similarly the inhibitory effects of mAb against the T cell accessory molecule LFA/1 were the same for both clones when either the transfectants or the lymphoblastoid cell line were used as APC, suggesting that L cells may express a molecule that is capable of acting as a ligand for human LFA/1. The results presented here further illustrate the value of transfectants in analyzing T cell recognition and accessory cell requirements. The patterns of degeneracy of MHC restriction exhibited by these clones provides a platform for a more detailed analysis of key residues involved in MHC class II-restricted T cell Ag recognition.  相似文献   

12.
Tumor-infiltrating lymphocytes (TIL) were obtained from a mouse melanoma cell line (CL 62) transfected with the gene for the human melanoma Ag p97. TIL were cultured with anti-CD3 antibody and IL-2 for up to 38 days. Flow cytometry identified these TIL as Thy-1.2 + ve/CD4-ve/CD8 + ve cells. A heteroconjugated antibody 500A2 x 96.5, specific for both the CD3 Ag on TIL and the p97 Ag on CL 62 melanoma cells, was prepared using N-succinimidyl-3-(2-pyridyldithio)-propionate as a linking agent. TIL alone demonstrated low levels of cytotoxicity against autologous CL 62 tumor and also against the parental K1735 tumor and an allogeneic murine melanoma (B16). The addition of 500A2 x 96.5 heteroconjugated antibody enhanced TIL-mediated lysis of CL 62 tumor, but not of the K1735 or B16 tumors. This enhanced cytotoxicity was elicited at E:T ratios as low as 0.4:1, and in TIL cultured for 7 to 38 days. These results suggest that hetero-conjugated antibody may enhance the anti-tumor effect of TIL in vivo.  相似文献   

13.
p53 mutations are frequently found in human cancers and are often associated with the overexpression of wild-type (WT) protein or peptide sequences, supporting the notion that WT p53 epitopes may serve as potential targets for tumor immunotherapy. We have developed a cytotoxic T lymphocyte (CTL)/p53 tumor-associated antigen (TAA) model, based on immune recognition of a WT p53 determinant. WT p53-peptide-specific, major histocompatibility complex (MHC) classI-restricted CTL were produced from immunocompetent C57BL/6 (H-2b) mice after immunization with a previously defined WT p53 peptide (p53(232-240)) Epitope-specific CTL were then employed to identify syngeneic tumor cell populations expressing that antigenic determinant. Two syngeneic tumor cell lines, MC38 colon carcinoma and MC57G fibrosarcoma, were demonstrated to express the endogenous WT p53(232-240) determinant naturally, as defined by CD8 + CTL recognition. Cold-target inhibition assays confirmed that CTL-mediated lysis was due to immune recognition of the p53(232-240) peptide epitope. The p53(232-240)-specific CTL line did not lyse syngeneic normal cells (i.e., mitogen-activated splenocytes) in the absence of exogenous peptide, suggesting that the WT-p53-specific CTL could distinguish between tumor cells expressing self-TAA and normal host cells. We have demonstrated, for the first time, that the adoptive transfer of WT-p53-specific CTL to mice with established pulmonary metastasis resulted in antitumor activity in vivo. The ability to generate MHC-class-I-restricted CD8- CTL lines specific for a non-mutated p53 determinant from normal, immunocompetent mice, which display antitumor activity both in vitro and in vivo (by adoptive transfer), may have implications for the immunotherapy of certain p53-expressing malignancies.  相似文献   

14.
HIV-1 Ag-specific CD4(+) T cell proliferative responses in human subjects with advanced, untreated HIV-1 disease are often weak or undetectable. Conversely, HIV-1-specific CD4(+) T cell proliferation is occasionally detected following suppression of HIV-1 replication with highly active antiretroviral therapy (HAART). These observations suggest that unchecked HIV-1 replication may lead to depletion or dysfunction of HIV-1-specific CD4(+) T cells, and that these defects may be partially corrected by viral suppression and subsequent immune reconstitution. However, the impact of this immune reconstitution on the repertoire of HIV-1-specific CD4(+) T cells has not been thoroughly evaluated. To examine the HIV-1-specific CD4(+) T cell repertoire in this clinical setting, we established HIV-1 p24-specific CD4(+) T cell clones from a successfully HAART-treated subject whose pretreatment peripheral CD4 count was 0 cells/ micro l. Eleven different p24-specific CD4(+) T cell clonotypes were distinguished among 13 clones obtained. Most clones produced both IFN-gamma and IL-4 upon Ag stimulation. Clones targeted eight distinct epitopes that varied in their conservancy among HIV-1 strains, and responses were restricted by one of three MHC II molecules. Clones showed a range of functional avidities for both protein and peptide Ags. Additional studies confirmed that multiple HIV-1 p24-derived epitopes were targeted by IFN-gamma-producing CD4(+) cells from subjects first treated with HAART during advanced HIV-1 disease (median, 4.5 peptides/subject; range, 3-6). These results suggest that in HAART-treated subjects whose peripheral CD4(+) T cell pools were once severely depleted, the HIV-1-specific CD4(+) T cell repertoire may include a diverse array of clonotypes targeting multiple HIV-1 epitopes.  相似文献   

15.
In previous studies, the shared cancer-testis Ag, NY-ESO-1, was demonstrated to be recognized by both Abs and CD8+ T cells. Gene expression of NY-ESO-1 was detected in many tumor types, including melanoma, breast, and lung cancers, but was not found in normal tissues, with the exception of testis. In this study, we describe the identification of MHC class II-restricted T cell epitopes from NY-ESO-1. Candidate CD4+ T cell peptides were first identified using HLA-DR4 transgenic mice immunized with the NY-ESO-1 protein. NY-ESO-1-specific CD4+ T cells were then generated from PBMC of a patient with melanoma stimulated with the candidate peptides in vitro. These CD4+ T cells recognized NY-ESO-1 peptides or protein pulsed on HLA-DR4+ EBV B cells, and also recognized tumor cells expressing HLA-DR4 and NY-ESO-1. A 10-mer peptide (VLLKEFTVSG) was recognized by CD4+ T cells. These studies provide new opportunities for developing more effective vaccine strategies by using tumor-specific CD4+ T cells. This approach may be applicable to the identification of CD4+ T cell epitopes from many known tumor Ags recognized by CD8+ T cells.  相似文献   

16.
CD16 Ag is associated with the low affinity FcR for IgG expressed on human NK cells and granulocytes. In this study, we demonstrate that NK cells specifically lyse murine anti-CD16 hybridoma cell lines, but do not lyse hybridomas against other cell surface differentiation Ag expressed on NK cells. Moreover, the CD18 structure is involved in the CD16-specific xenogeneic interaction between human effector cells and murine hybridoma target cells. Although interaction with anti-CD16 hybridomas or antibodies triggers the cytolytic mechanism of NK cells, this interaction does not induce cellular proliferation. In contrast to NK cells, CD16+ granulocytes do not lyse anti-CD16 hybridoma cell targets and do not mediate ADCC against antibody-coated human tumor cell targets. These findings indicate a fundamental difference in the antibody-dependent cellular cytotoxicity mechanisms of NK cells and granulocytes. Comparative biochemical analysis of CD16 on NK cells and granulocytes revealed significant differences in the size of the polypeptides obtained after removal of N-linked carbohydrate residues with endo-F and N-glycanase digestion.  相似文献   

17.
The role of perforin, IFN-gamma, and TNF-alpha in anti-tumor CD8 T cell immunity was examined in a new tumor model using a CD8 T cell epitope (GP33) derived from lymphocytic choriomeningitis virus as a tumor-associated Ag. In contrast with parental 3LL-A9 (A9) Lewis lung carcinoma cells that progressively grow in C57BL/6 mice, s.c. injection of GP33-transfected A9GP33 tumor cells induced a protective GP33-specific CD8 T cell response that led to complete tumor cell elimination. Tumor regression was dependent on perforin, IFN-gamma, or TNF-alpha, because A9GP33 tumors developed in mice deficient in one of these genes. A9GP33 tumors arising in perforin- and IFN-gamma-deficient mice represented GP33 Ag-loss variants, demonstrating that GP33-specific CD8 T cells from these mice were able to exert an Ag selection pressure. In contrast, tumor cells growing in TNF-alpha knock-out mice still expressed the tumor-associated GP33 peptide despite the presence of activated GP33-specific CD8 T cells. These findings provide evidence for a crucial role of TNF-alpha in A9 tumor cell elimination by CD8 T cells in vivo.  相似文献   

18.
Over the past decade, many efforts have been made to identify MHC class II-restricted epitopes from different tumor-associated Ags. Melan-A/MART-1(26-35) parental or Melan-A/MART-1(26-35(A27L)) analog epitopes have been widely used in melanoma immunotherapy to induce and boost CTL responses, but only one Th epitope is currently known (Melan-A51-73, DRB1*0401 restricted). In this study, we describe two novel Melan-A/MART-1-derived sequences recognized by CD4 T cells from melanoma patients. These epitopes can be mimicked by peptides Melan-A27-40 presented by HLA-DRB1*0101 and HLA-DRB1*0102 and Melan-A25-36 presented by HLA-DQB1*0602 and HLA-DRB1*0301. CD4 T cell clones specific for these epitopes recognize Melan-A/MART-1+ tumor cells and Melan-A/MART-1-transduced EBV-B cells and recognition is reduced by inhibitors of the MHC class II presentation pathway. This suggests that the epitopes are naturally processed and presented by EBV-B cells and melanoma cells. Moreover, Melan-A-specific Abs could be detected in the serum of patients with measurable CD4 T cell responses specific for Melan-A/MART-1. Interestingly, even the short Melan-A/MART-1(26-35(A27L)) peptide was recognized by CD4 T cells from HLA-DQ6+ and HLA-DR3+ melanoma patients. Using Melan-A/MART-1(25-36)/DQ6 tetramers, we could detect Ag-specific CD4 T cells directly ex vivo in circulating lymphocytes of a melanoma patient. Together, these results provide the basis for monitoring of naturally occurring and vaccine-induced Melan-A/MART-1-specific CD4 T cell responses, allowing precise and ex vivo characterization of responding T cells.  相似文献   

19.
While the immune system has the capacity to recognize and destroy melanoma, tolerance mechanisms often hinder the development of effective anti-tumor immune responses. Since many melanoma antigens are self proteins expressed in normal melanocytes, self antigen exposure before tumor development can negatively impact the function of T cells specific for these self/tumor antigens. However, the contribution of self tolerance to anti-melanoma T cell dysfunction remains largely unexplored. We have previously described a TCR transgenic (Tg) mouse model in which T cells specific for the self/melanoma antigen, tyrosinase-related protein 1 (TRP1), develop in the presence of endogenous TRP1 expression (Ag+) and diminished antigen presentation due to the absence of gamma-interferon-inducible lysosomal thiol reductase (GILT-/-). We show that TRP1-specific T cells from these Ag+GILT-/-Tg mice do not protect from melanoma tumor growth, fail to induce autoimmune vitiligo, and undergo diminished proliferation compared to T cells from Ag-GILT+/+Tg mice. Despite an increased frequency of TRP1-specific Treg cells in Ag+GILT-/-Tg mice compared to Ag-GILT+/+Tg animals, Treg cell depletion only partially rescues the proliferative capacity of T cells from TRP1-expressing mice, suggesting the involvement of additional suppressive mechanisms. An increased percentage of melanoma-specific T cells from Ag+GILT-/-Tg animals express PD-1, an inhibitory receptor associated with the maintenance of T cell exhaustion. Antibody blockade of PD-1 partially improves the ability of TRP1-specific T cells from Ag+GILT-/-Tg mice to produce IL-2. These findings demonstrate that melanoma-specific T cells exposed to a self/melanoma antigen in healthy tissue develop an exhaustion-like phenotype characterized by PD-1-mediated immunosuppression prior to encounter with tumor.  相似文献   

20.
Evidence is presented for an endogenous route of Ag processing for CD4+ T cell recognition of influenza hemagglutinin that requires obligatory traffic of de novo synthesized hemagglutinin across the lumen of the endoplasmic reticulum for processing in a cytosolic compartment. I-Ad-restricted T cell clones that recognize synthetic peptides corresponding to two distinct antigenic regions of the HA1 subunit, HA1 56-76 and HA1 177-199, are cytotoxic and, dependent on epitope specificity can recognize endogenously processed Ag and lyse class II+ target cells infected with a recombinant vaccinia-X31 HA virus. HA1 56-76 specific T cell clones fail to recognize (target cells infected with) influenza X31 viruses, containing a single residue change, HA1 63 Asp----Asn that introduces an oligosaccharide attachment site: Asp63Cys64Thr65. Recognition is restored, however, by tunicamycin treatment of mutant virus infected target cells. Inasmuch as N-glycosylation of nascent hemagglutinin polypeptides occurs in the lumen of the endoplasmic reticulum, this indicates a route of endogenous processing for hemagglutinin, requiring transport across the endoplasmic reticulum, which has been confirmed by the failure of CD4+ T cells to recognize a recombinant VACC-hemagglutinin virus in which the same single residue change, HA1 63 Asp----Asn has been introduced by site directed mutagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号