首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Sugar beet protoplasts (Beta vulgaris L.) were isolated from hypocotyl-derived suspension cells and cultured on modified Murashige and Skoog medium supplemented with 5 μM naphthaleneacetic acid (NAA) and 2 μM 6-benzyl-aminopurine (BAP). Protoplasts were plated at a density 1.0–1.5×105 cm−3 and incubated in either liquid medium or in medium solidified by 1.2% agarose, at 25°C in the dark. Comparison of two methods of culture unequivocally showed the second to be superior. Immobilizing the protoplast in agarose proved to be essential for obtaining sustained protoplast division and reproducible colony formation. The plating efficiency after two weeks of culture, expressed as the percentage of protoplasts which developed to form colonies, reached 40%. Subsequent subcultures of protoplast-derived callus to regeneration media with different concentrations of BAP (5 μM, 10 μM, 20 μM, 30 μM) resulted in very good callus proliferation at the three lowest concentrations, although organogenesis was not achieved.  相似文献   

2.
Protoplast isolation and subsequent plant regeneration of Albizia julibrissin was achieved from leaf and callus explants. Leaf tissue from 4 to 5-week-old in vitro seedlings was the best source for high-yield protoplast isolation. This approach produced 7.77?×?105 protoplasts (Pp) per gram fresh weight with 94?% viability; after 60 min pre-plasmolysis with 0.7 M sorbitol followed by digestion in a solution of cell and protoplast wash plus 0.7 M mannitol, 1.5?% cellulase Onozuka R10, and 1?% pectolyase Y-23 for 6 h. Liquid Kao and Michayluk medium containing 2.7 μM α-naphthaleneacetic acid (NAA) and 2.2 μM 6-benzylaminopurine (BA) was best for sustained cell division and microcolony formation from both leaf- and callus-derived protoplasts at a density of 3–5?×?105 Pp ml?1. Protoplast-derived microcalli became visible after 3–4 weeks on semi-solid medium of the same composition. Microcalli were then cultured on Murashige and Skoog (MS) medium containing Gamborg B5 vitamins or woody plant medium supplemented with different concentrations of NAA plus 4.4 μM BA for further growth. Proliferated leaf- and callus-protoplast-derived calli differentiated into microshoots on MS medium containing 13.2 μM BA plus 4.6 μM zeatin after 2–3 weeks, with an overall shoot organogenesis efficiency of 78–93?%. Rooting of microshoots on half-strength MS medium containing 4.9 µM indole-3-butyric acid was successful, and plantlets were acclimatized to the greenhouse with a survival rate of >62?%. Using ten start codon targeted and ten inter-simple sequence repeat primers, the genetic integrity of nine leaf- and six callus-protoplast-based plants was validated along with the mother seedlings.  相似文献   

3.
This study is a comparison of four methods to induce calli formation in a protoplast culture of Chrysanthemum indicum. Culture in liquid medium (17.6 calli/105 protoplasts) was preferable to culture in solid agarose beads, although the efficiency of the latter could be improved by layering them on glass beads (12.5 vs. 0.83 calli/105 protoplasts). Culture of protoplasts on moistened filter paper was unsuccessful. In the liquid media, microcalli and calli were induced efficiently and easily after 6 weeks. These effects may be explained by reduced toxicity due to cell breakdown and improved aeration.  相似文献   

4.
Mesophyll protoplasts from in vitro grown plants of a cytoplasmic albino mutant ofLycopersicon esculentum cv. Large Red Cherry were isolated with yields between 0.4 to 4.4 × 106 protoplasts per gram leaf tissue. Success in the culture of these protoplasts was dependent on embedding of the protoplasts in 100 µ1 agarose droplets 0.6% (w/v). A plating efficiency of 4.0% was obtained when the protoplasts were cultured in TM-2 medium with sucrose concentrations of 8.7 to 9.6% (w/v) resulting in an osmotic pressure of 432 to 469 mOsmol kg-1. After 14 days of protoplast culture, microcalli with a diameter of 3 mm were observed. After 3 weeks, macrocalli were obtained which were transferred to regeneration medium. Regeneration of shoot primordia, with a frequency of 19%, was obtained on TM-4 medium supplemented with 1% (w/v) sucrose. The first shoot primordia were visible 10 weeks after protoplast plating. For development of the shoot primordia into shoots it was necessary to increase the sucrose concentration to 6% (w/v). Eight out of eleven regenerants were diploid (2n = 2x = 24); the other three were tetraploid. Efficient regeneration of mesophyll albino protoplasts from tomato opens the way to select at the cellular level for the chloroplast transfers.  相似文献   

5.
A procedure for the culture of Solanum etuberosum mesophyll protoplasts with subsequent shoot regeneration is described. Several factors affected protoplast yield, colony formation, and shoot regeneration from in vitro plants. A protoplast isolation medium with 0.6 M sucrose produced twice the yield as one with 0.3 M sucrose. uowever, a higher concentration of osmoticum was inhibitory to colony development unless it was diluted into a lower osmoticum medium in a bilayer system. A 16 hour light/8 hour dark photoperiod for stock plants allowed twice the protoplast yield compared to plants grown under continuous light but no effect was found on subsequent colony formation or shoot regeneration. The concentrations of four major salts in the protoplast plating medium were critical for a high frequency of colony formation from protoplasts. Levels of 0.25 × or 1 × were considerably better than 4 ×. Fast colony formation, but at a lower efficiency, was obtained with a monolayer plating method. A bilayer plating system allowed a higher efficiency but colonies developed more slowly. For the best treatments, the frequency of colony formation from protoplasts ranged from 2.4 to 3.6 × 10-3 with 37% to 66% of the colonies producing shoots ten weeks after protoplast isolation.Cooperative investigation of the USDA-ARS and the Wisconsin Agric. Exp. Stn.  相似文献   

6.
Protoplasts were isolated enzymatically from the carrageenophyte red alga Grateloupia turuturu (Halymeniales, Rhodophyta) that occurs along the coast of the French Channel in Normandy. Effects of the main factors on the protoplast yield were identified to improve the isolation protocol. The optimal enzyme composition for cell wall digestion and protoplast viability consisted of 2% cellulase Onozuka R-10, 0.5% macerozyme R-10, 2% crude extract from viscera of Haliotis tuberculata, 0.8 M mannitol, 20 mM sodium citrate, 0.3% bovine serum albumin at 25°C, and 4-h incubation period. The protoplasts were approximately 5–15 μm in diameter, liberated mainly from the surface cell layers. Maximum yield was 1.5 × 107 protoplasts g-1 fresh tissue. The protoplasts underwent initial division after 14 days with a high density level of 1 × 106 cells mL-1 in culture medium and developed into microthalli of a line of two to six cells.  相似文献   

7.
A procedure is described for the isolation and culture of protoplasts from embryogenic callus (gel-like callus — GLC) and embryogenic suspension cultures (ESC) of Cucumis sativus c.v. Borszczagowski. Maximal protoplast yields from GLC and ESC were 5×106 and 1×107 protoplasts/g tissue respectively. They were obtained following 14–16 h digestion with 1.2% Cellulase Onozuka R-10, 1.2% Macerozyme R-10 and 0.3% Driselase. At a plating density of 2×105 / ml, first divisions occurred in 4–5 days and 7–8 days in ESC-and GLC-derived protoplasts respectively. The highest percentage of direct embryogenesis (over 80%) was observed with ESC. It was possible to obtain approximately 5000 embryo structures / g tissue. Some embryos converted into plants after 6 weeks, but most of them after 2 months of culture. ESC-derived plants, when transferred into the glasshouse, bloomed normally, and set seeds.Abbreviations CMS Murashige & Skoog (1962) medium for cucumber - GLC gel-like callus - ESC established embryogenic suspension culture - 2,4-d 2,4-dichlorophenoxyacetic acid  相似文献   

8.
We describe here an efficient and reproducible protocol for isolation and culture of protoplasts from Ulmus minor. Different sources of donor tissues were tested for protoplast isolation: callus and juvenile leaves from in vitro and greenhouse plants. Several combinations and concentrations of hydrolytic enzymes were used. Comparative tests between Cellulase Onozuka R10 and Cellulase Onozuka RS were made and the last one proved to be more efficient. Both the pectinases used, Macerozyme Onozuka R10 and Pectinase (Sigma®), were efficient in protoplast isolation and there was no need for a more active pectinase. In vitro leaves proved to be the best source for protoplast isolation and produced an average of 3.96 × 107 protoplasts per gram of fresh weigh. Elm mesophyll protoplasts were cultured using the advantageous method of agarose droplets and a modification of the Kao and Michayluk culture medium, using two plating densities (1 × 105 and 2 × 105 protoplasts ml?1). Protoplast division and evolution into colonies and microcalli was promoted in the agarose droplets plated at 2 × 105 protoplasts ml?1. Ten weeks after protoplast culture initiation a plating efficiency of 2.7% was attained and the bigger microcalli, with at least 0.5 mm diameter, were transferred to a solid medium previously used for the production of embryogenic callus.  相似文献   

9.
Rice (Oryza sativa L.) plants of the indica cultivar IR54 were regenerated from protoplasts. Conditions were developed for isolating and purifying protoplasts from suspension cultures with protoplast yields ranging from 1·106 to 15·106 viable protoplasts/1 g fresh weight. Protoplast viability after purification was generally over 90%. Protoplasts were cultured in a slightly modified Kao medium in a Petri plate by placing them onto a Millipore filter positioned on top of a feeder (nurse) culture containing cells from a suspension culture of the japonica rice, Calrose 76. Plating efficiencies of protoplasts ranged from 0.5 to 3.0%; it was zero in the absence of the nurse culture. Protoplast preparations usually contained no contaminating cells, and when present, the number of cells never exceeded 0.1% of the protoplasts. After three weeks the Millipore filter with callus colonies were transferred off feeder cells and onto a Linsmaier and Skoog-type medium for an additional three weeks. Selected callus colonies that had embryo-like structures were then transferred to regeneration medium containing cytokinins, and regeneration frequencies up to 80% were obtained. Small shoots emerged and were transferred to jars for root development prior to transferring to pots of soil and growing the plants to maturity in growth chambers. Of the cytokinins evaluated, N6-benzylaminopurine was the most effective in promoting shoot formation; however, kinetin was also somewhat effective. Regeneration medium could be either an N6 or Murashige and Skoog basal medium. Of 76 plants grown to maturity, 62 were fertile, and the plant heights averaged about three-fourths the height of seed-grown plants.Two other suspension cultures of IR54, one developed from the protoplast callus of the initial IR54 line, and the other developed from callus produced by mature seeds, have yielded protoplasts capable of regenerating plants when using cells of the Calrose 76 suspension as a nurse culture. In addition, protoplasts obtained from three-week-old primary callus of immature embryos of IR54 were capable of regenerating plants when using the same culture conditions.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - pcy packed cell volume - BAP N6-benzylaminopurine - FDA fluorescein diacetate - FW fresh weight - IAA indole-3-acetic acid Media AA Muller and Grafe (1978) - CPW Frearson et al. (1973) - Kao* Kao (1977) - LS Linsmaier and Skoog (1965) - MS Murashige and Skoog (1962) - N6 Chu et al. (1975) - PCM Ludwig et al. (1985)  相似文献   

10.
Protoplasts were isolated from friable embryogenic callus (FEC) and from suspensions derived from FEC of cassava genotype TMS60444. Suspensions yielded the highest number of protoplasts (1.5×106 protoplasts/g fresh weight). Protoplasts plated at a density of 105–106/ml in a medium supplemented with 0.5 mg/l α-naphthaleneacetic acid and 1 mg/l zeatin began dividing after 3 days, and after 30 days this resulted in an absolute plating efficiency as high as 2.5%. After 2 months of culture, 60% of the developed calli were highly friable and in appearance identical to the original FEC. The protoplast derived FEC was first purified through two rounds of selection of 3 weeks each before beeing cultured for regeneration of plants. This was done by culturing the protoplast-derived FEC for 11 weeks on maturation medium, yielding a maximum of 184 organized embryos per 10.000 initially cultured protoplasts. Most of the organized embryos were torpedo shaped and matured after they had been isolated from the calli and transferred to fresh medium. Mature embryos were multiplied by secondary somatic embryogenesis at high efficiency (>90%) on a medium supplemented with 8 mg/l 2,4-dichlorophenoxyacetic acid. About 30% of the mature secondary somatic embryos developed into shoots after transfer to a medium supplemented with 1 mg/l N6-benzylaminopurine (BAP). Shoots rooted readily on a medium without BAP. Received: 30 August 1996 / Revision received: 9 June 1997 / Accepted: 1 October 1997  相似文献   

11.
Regenerable embryogenic suspensions were established from one Indica (group 1) rice advanced breeding line and 9 Indica (group 1) rice varieties in 6–8 weeks. Four were chosen for protoplast culture and plant regeneration. About 4–7×107 protoplasts were isolated from one gram of 8-week-old cell suspension. High plating efficiency (30.5%) and colony formation (13.7%) were obtained using nurse culture methods. A high plant regeneration frequency (67.5%) was observed for line IR57311-95-2-3. In total, 322 plants were regenerated. All the regenerated plants were fertile.Abbreviation 2,4-D 2,4-dichlorophenoxy acetic acid - NAA 1-naphtalene acetic acid  相似文献   

12.
Direct genetic transformation of mesophyll protoplasts was studied in Pelargonium × hortorum. Calcein and green-fluorescent protein (GFP) gene were used to set up the process. Electroporation (three electric pulses from a 33-μF capacitor in a 250-V cm−1 electric field) was more efficient than PEG 6000 for membrane permeation, protoplast survival and cell division. Transient expression of GFP was detected in 33–36% of electroporated protoplasts after 2 days and further in colonies. A protoplast suspension conductivity of >1,500 μS cm−1 allowed high colony formation and plant regeneration. Stable transformation was obtained using the plasmid FAJ3000 containing uidA and nptII genes. When selection (50 mg l−1 kanamycin) was achieved 6 weeks after electroporation, regenerated shoots were able to grow and root on 100 mg l−1 kanamycin. The maximum transformation efficiency was 4.5%, based on the number of colonies producing kanamycin-resistant rooted plants or 0.7% based on the number of cultured protoplasts. Polymerase chain reaction (PCR) analysis on in vitro micropropagated plants showed that 18 clones out of 20 contained the nptII gene, while the uidA gene was absent. These results were confirmed after PCR analyses of five glasshouse-acclimatized clones.  相似文献   

13.
A study was undertaken to develop a protoplast regeneration system for pinellia. A yield of 19 29 x 105 protoplasts/g F. W. could be obtained from cell suspension cultures incubated in a digestion enzyme solution with 2% cellulase Onzuka R-10, 10% pectinase (Sigma), 0.01% pectolyase Y23. K8P and modified MS media were used to culture protoplasts in: a) liquid, b) liquid-solid double layer, or c) agarose embedded protoplast culture. The former two were conducive to colony formation from protoplast-derived cells. The frequency of cell division was about 8% after 3 days in culture. Gradually adding fresh medium of lower osmotic pressure into the medium for protoplast culture favored cell division. Calli (1–2 mm in diameter) formed after 30–40 days in culture. The calli transferred onto medium supplemented with KT (0.5 mg 1–1) and NAA (0.2 mg 1)–1) could regenerate plants after 40–50 days. Of 47 plantlets transplanted into plots, 29 flowered and were fertile.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - NAA -naphthaleneacetic acid - KT kinetin - CH casein hydrolysate  相似文献   

14.
该研究以黑果枸杞(Lycium ruthenicum)无菌苗为材料,建立了愈伤组织来源的原生质体再生体系,采用ISSR和FCM技术对再生植株进行了遗传稳定性分析。结果表明:(1)黑果枸杞叶片愈伤组织是产生原生质体的最好材料,在含0.5 mg·mL-1甘露醇的酶液中,继代1次的叶片愈伤组织中原生质体产量为7.77×106个·g-1,活力为92%。(2)改良MS培养基 固体液体双层培养(MS2 固液双层)是培养原生质体的最好方式,培养10 d的原生质体分裂频率为45.9%,培养20 d的细胞团形成频率为22.9%。(3)在1.5 mg·mL-1 6 BA+0.1 mg·mL-1 IBA+MS培养基中,叶片愈伤组织产生的原生质体可分化获得再生植株。(4)ISSR分析显示,再生植株的平均遗传相似系数为0.88;FCM显示再生植株为二倍体,与亲本植株一致。该研究结果为进一步研究枸杞体细胞杂交技术转移野生植物抗逆遗传性状提供科学依据,为枸杞优良品种的选育奠定了基础。  相似文献   

15.
A simple and efficient protocol for plant regeneration from protoplasts of the potted plant Kalanchoe blossfeldiana Poelln. is reported. Mesophyll protoplasts were isolated from axenic leaves after a preculture. The enzymatic digestion of the tissue with a solution containing 0.4% Cellulase Onozuka R-10 and 0.2% Driselase yielded 6.0 × 105 protoplasts per gram fresh weight after density gradient purification. Protoplasts were cultured in the dark at an initial density of 1 × 105 protoplasts per milliliter in a liquid medium with 320 mM mannitol, 130 mM sucrose, 2.3 μM 2,4-dichlorophenoxy acetic acid (2,4-D), 5.4 μM 1-naphthaleneacetic acid (NAA) and 2.2 μM 6-benzyladenine (BA). Cell wall regeneration was observed within 4 days of culture and cell division began after 5–7 days. When cultured in a liquid medium with 5.4 μM NAA and 8.9 μM BA, protoplast-derived colonies proliferated until small visible calli, and adventitious buds appeared after transfer to photoperiod conditions. Developed shoots were rooted on a solid medium supplemented with 0.6 μM indole-3-acetic acid (IAA) and successfully established under greenhouse conditions. The process required 4 months from isolation to rooted plants and the best conditions found gave a plant regeneration efficiency of 6.4 plants per 1 × 105 protoplasts. This is the first protocol reported for plant regeneration from protoplasts for a Crassulaceae family species.  相似文献   

16.
For 18 sugarcane cultivars, four distinct callus types developed on leaf explant tissue cultured on modified MS medium, but only Type 3 (embryogenic) and Type 4 (organogenic) were capable of plant regeneration. Cell suspension cultures were initiated from embryogenic callus incubated in a liquid medium. In stage one the callus adapted to the liquid medium. In stage two a heterogeneous cell suspension culture formed in 14 cultivars after five to eight weeks of culture. In stage three a homogeneous cell suspension culture was developed in six cultivars after 10 to 14 weeks by selective subculturing to increase the proportion of actively dividing cells from the heterogeneous cell suspension culture. Plants were regenerated from cell aggregates in heterogeneous cell suspension cultures for up to 148 days of culture but plants could not be regenerated from homogeneous cell suspension cultures. High yields of protoplasts were obtained from homogeneous cell suspension cultures (3.4 to 5.2 × 106 protoplasts per gram fresh weight of cells [gfwt-1]) compared to heterogeneous cell suspension cultures (0.1 × 106 protoplasts gfwt-1). Higher yields of protoplasts were obtained from homogeneous cell suspension cultures for cultivars Q63 and Q96 after regenerating callus from the cell suspension cultures, then recycling this callus to liquid medium (S-cell suspension cultures). This process increased protoplast yield to 9.4 × 106 protoplasts gfwt-1. Protoplasts isolated from S-cell suspension cultures were regenerated to callus and recycled to produce SP-cell suspension cultures yielding 6.4 to 13.2 × 106 protoplasts gfwt-1. This recycling of callus to produce S-cell suspension cultures allowed protoplasts to be isolated for the first time from cell lines of cultivars Q110 and Q138.  相似文献   

17.
An efficient procedure for plantlet regeneration from chicory mesophyll protoplasts has been developed in order to perform protoplast fusion experiments. Protoplasts were isolated from a genotype of Italian red chicory (CH 363) and purified by centrifugation in a solution containing 13% (w/v) sucrose to collect uniform protoplasts in size. After 2 days culture at a density of 2×104 protoplasts ml−1 of liquid medium, protoplasts were cultured following three different procedures: in liquid medium, stratified in semi-solid medium, and embedded in Ca-alginate droplets. Four different media were used and culture procedures were evaluated recording the protoplast viability, protoplast division frequency and plating efficiency for each experiment. The embedding of protoplasts in Ca-alginate droplets enhanced both division frequency and plating efficiency for chicory mesophyll cells. Furthermore, this procedure shortened the cycle of plant regeneration from protoplasts, which could be completed in eight weeks. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Fertile plants have been obtained from maize (Zea mays L.) embryogenic suspension culture protoplasts. Friable, embryogenic callus initiated from an immature embryo from a cross involving the genotypes A188, B73, and Black Mexican sweetcorn was used to establish a rapidly growing embryogenic suspension culture. After nine months in culture, high yields of viable protoplasts (30×106/ gram fresh weight) were obtained following a 1.5 hour enzymatic digestion. Protoplasts cultured with feeder cells divided and formed embryogenic callus, from which male and female fertile plants were regenerated. Protoplast-derived R1 plants were self-pollinated and immature R2 embryos isolated for callus initiation. Female fertile plants have also been produced from protoplasts isolated from an R2-derived suspension culture. Significant interactions between protoplast and feeder-cell lines were observed.Abbreviations BC backcross - BMS Black Mexican Sweetcorn - 2,4-D 2,4-dichlorophenoxyacetic acid - PWS protoplast wash solution (0.2 M mannitol, 80 mM CaCl2) - FDA fluorescein diacetate - ABA abscisic acid  相似文献   

19.
A protocol is presented for regenerating plants from leaf protoplasts of Oenothera. The method uses (1) embedding of isolated protoplasts at high cell densities in thin alginate layers, (2) initial culture in B5 medium containing 3 mg l–1 α-naphthaleneacetic acid (NAA) and 1 mg l-1 6-benzylaminopurine (BAP), (3) reduction of the osmotic pressure of the culture medium at early stages of culture and (4) plating of microcolonies recovered from the alginate onto solid B5 medium with 3 mg l–1 NAA and 1 mg l–1 BAP. The shortest time required from protoplast isolation to the appearance of shoot initials was 7 weeks. The efficiency of the procedure for protoplast to cell line formation is high (about 80%). Received: 17 February 1997 / Revision received: 6 November 1997 / Accepted: 15 November 1997  相似文献   

20.
Large populations of viable protoplasts were released from suspension cultured cells of the woody medicinal plant Solanum dulcamara (bittersweet, woody nightshade) when the cells were harvested 3 to 7 months after culture initiation and 4 to 5 days after transfer to fresh medium. A Bio-Gel p6 purified enzyme mixture enhanced the protoplast plating efficiency 6 fold compared to the unpurified mixture, without affecting protoplast yield. Agarose-solidified medium markedly improved protoplast division and colony formation, and enabled protoplasts to be plated at lower densities than in liquid medium. All protoplast-derived tissues produced shoots on MS based medium with 1.0 mgl-1 zeatin. Shoots rooted readily on medium lacking phytohormones. Cytological examination revealed high chromosome stability of suspension cultured cells, of plants derived from such cells, and of protoplast-derived plants. The implication of these results is discussed in relation to the genetic manipulation of this pharmaceutically important plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号