首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural grasslands in southern Australia commonly exist in altered states. One widespread altered state is grassland pasture dominated by cool‐season (C3) native grasses maintained by ongoing grazing. This study explores the consequences of removing grazing and introducing fire as a conservation management tool for such a site. We examined the abundance of two native and three exotic species, across a mosaic of fire regimes that occurred over a three‐year period: unburnt, summer wild‐fire (>2 years previous), autumn management fire (<1 year previously) and burnt in both fires. Given that one aim of conservation management is to increase native species at the expense of exotics, the impacts of the fires were largely positive. Native grasses were at higher cover levels in the fire‐managed vegetation than in the unburnt vegetation. Of the three exotic species, one was consistently at lower density in the burnt plots compared to the unburnt plots, while the others were lower only in those plots burnt in summer. The results show that the response of a species varies significantly between different fire events, and that the effects of one fire can persist through subsequent fires. Importantly, some of the effects were large, with changes in the density of plants of over 100‐fold. Fire is potentially a cost‐effective tool to assist the ecological restoration of retired grassland pastures at large scales.  相似文献   

2.
Question. Can strategic burning, targeting differing ecological characteristics of native and exotic species, facilitate restoration of native understorey in weed‐invaded temperate grassy eucalypt woodlands? Location. Gippsland Plains, eastern Victoria, Australia. Methods. In a replicated, 5‐year experimental trial, the effects of repeated spring or autumn burning were evaluated for native and exotic plants in a representative, degraded Eucalyptus tereticornis grassy woodland. Treatments aimed to reduce seed banks and modify establishment conditions of exotic annual grasses, and to exhaust vegetative reserves of exotic perennial grasses. Treatments were applied to three grassland patch types, dominated by the native grass Austrodanthonia caespitosa, ubiquitous exotic annuals, or the common exotic perennial grass Paspalum dilatatum. Results. The dominant native grass Austrodanthonia caespitosa and native forbs were resilient to repeated fires, and target exotic annuals and perennials were suppressed differentially by autumn and spring fires. Exotic annuals were also suppressed by drought, reducing the overall treatment effects but indicating important opportunities for restoration. The initially sparse exotic geophyte Romulea rosea increased in cover with fire and the impact of this species on native forbs requires further investigation. There was minimal increase in diversity of subsidiary natives with fire, probably owing to lack of propagules. Conclusions. While fire is often considered to increase ecosystem invasibility, our study showed that strategic use of fire, informed by the relative responses of available native and exotic taxa, is potentially an effective step towards restoration of weed‐invaded temperate eucalypt woodlands.  相似文献   

3.
Abstract. Questions: This paper examines the long‐term change in the herbaceous layer of semi‐arid vegetation since grazing ceased. We asked whether (1) there were differences in the temporal trends of abundance among growth forms of plants; (2) season of rainfall affected the growth form response; (3) the presence of an invasive species influenced the abundance and species richness of native plants relative to non‐invaded plots, and (4) abundance of native plants and/or species richness was related to the time it took for an invasive species to invade a plot. Location: Alice Springs, Central Australia. Methods: Long‐term changes in the semi‐arid vegetation of Central Australia were measured over 28 years (1976–2004) to partition the effects of rainfall and an invasive perennial grass. The relative abundance (biomass) of all species was assessed 25 times in each of 24 plots (8 m × 1 m) across two sites that traversed floodplains and adjacent foot slopes. Photo‐points, starting in 1972, were also used to provide a broader overview of a landscape that had been intensively grazed by cattle and rabbits prior to the 1970s. Species’abundance data were amalgamated into growth forms to examine their relationship with environmental variation in space and time. Environmental variables included season and amount of rainfall, fire history, soil variability and the colonization of the plots by the exotic perennial grass Cenchrus ciliaris (Buffel grass). Results: Constrained ordination showed that season of rainfall and landscape variables relating to soil depth strongly influenced vegetation composition when Cenchrus was used as a covariate. When Cenchrus was included in constrained ordination, it was strongly related to the decline of all native growth forms over time. Univariate comparisons of non‐invaded vs impacted plots over time revealed unequivocal evidence that Cenchrus had caused the decline of all native growth form groups and species richness. They also revealed a contrasting response of native plants to season of rainfall, with a strong response of native grasses to summer rainfall and forbs to winter rainfall. In the presence of Cenchrus these responses were strongly attenuated. Discussion: Pronounced changes in the composition of vegetation were interpreted as a response to removal of grazing pressure, fluctuations in rainfall and, most importantly, invasion of an exotic grass. Declines in herbaceous species abundance and richness in the presence of Cenchrus appear to be directly related to competition for resources. Indirect effects may also be causing the declines of some woody species from changed fire regimes as a result of increased fuel loads. We predict that Cenchrus will begin to alter landscape level processes as a result of the direct and indirect effects of Cenchrus on the demography of native plants when there is a switch from resource limited (rainfall) establishment of native plants to seed limited recruitment.  相似文献   

4.
Reestablishment of perennial vegetation is often needed after wildfires to limit exotic species and restore ecosystem services. However, there is a growing body of evidence that questions if seeding after wildfires increases perennial vegetation and reduces exotic plants. The concern that seeding may not meet restoration goals is even more prevalent when native perennial vegetation is seeded after fire. We evaluated vegetation cover and density responses to broadcast seeding native perennial grasses and mountain big sagebrush (Artemisia tridentata Nutt. spp. vaseyana [Rydb.] Beetle) after wildfires in the western United States in six juniper (Juniperus occidentalis ssp. occidentalis Hook)‐dominated mountain big sagebrush communities for 3 years postfire. Seeding native perennial species compared to not seeding increased perennial grass and sagebrush cover and density. Perennial grass cover was 4.3 times greater in seeded compared to nonseeded areas. Sagebrush cover averaged 24 and less than 0.1% in seeded and nonseeded areas at the conclusion of the study, respectively. Seeding perennial species reduced exotic annual grass and annual forb cover and density. Exotic annual grass cover was 8.6 times greater in nonseeded compared to seeded areas 3 years postfire. Exotic annual grass cover increased over time in nonseeded areas but decreased in seeded areas by the third‐year postfire. Seeded areas were perennial‐dominated and nonseeded areas were annual‐dominated at the end of the study. Establishing perennial vegetation may be critical after wildfires in juniper‐dominated sagebrush steppe to prevent the development of annual‐dominated communities. Postwildfire seeding increased perennial vegetation and reduced exotic plants and justifies its use.  相似文献   

5.
In this study, we aimed to assess the processes controlling compositional change in a Northern Andean páramo highly affected by human‐induced disturbances over the last few decades (La Rusia, Colombia). Along the 3000–3800 m asl altitudinal range, we randomly sampled fifty 10 × 10 m plots. Therein, we measured altitude and variables related to soil conditions (i.e., moisture, nutrient contents, bulk density, and texture), occurrence of human‐induced disturbances (i.e., fire, vegetation clearing, potato cultivation, and cattle grazing), and land‐use history. We also recorded richness and abundance of plant species, identifying them as exotic or native. We differentiated four groups of plots according to their species composition. The groups had significant differences in altitude, soil conditions, land‐use history, and particularly, in richness of exotic species and exotic/native cover ratio. They could be ascribed to shrub‐ and grass‐páramo vegetation types based on their relative dominance of woody and herbaceous species; however, these groups were not arranged according to the hypothetical composition of altitudinal belts, but rather formed a mosaic of patches. This mosaic was determined not only by altitude but also by soil conditions and disturbance history of sites. Our results corroborate recent findings which highlight shrub‐ and grass‐páramo vegetation types as patches of contrasting species composition and structure that depend on local environmental variables, as well as human‐induced disturbances as a major determinant of compositional discontinuities in these ‘high mountain’ tropical ecosystems.  相似文献   

6.
Banksia woodlands are renowned for their flammability and prescribed fire is increasingly employed to reduce the risk of wildfire and to protect life and property, particularly where these woodlands occur on the urban interface. Prescribed fire is also employed as a tool for protecting biodiversity assets but can have adverse impacts on native plant communities. We investigated changes in species richness and cover in native and introduced flora following autumn prescribed fire in a 700‐hectare Banksia/Tuart (Eucalyptus gomphocephala) woodland that had not burnt for more than 30 years. Effectiveness of management techniques at reducing weed cover and the impacts of grazing by Western Grey Kangaroo (Macropus fuliginosus) postfire were also investigated. Thirty plots were established across a designated burn boundary immediately before a prescribed fire in May 2011, and species richness and cover were measured 3 years after the fire, in spring of 2013. Fencing treatments were established immediately following the fire, and weed management treatments were applied annually in winter over the subsequent 3 years. Our results indicate that autumn prescribed fire can facilitate increases in weed cover, but management techniques can limit the establishment of targeted weeds postfire. Postfire grazing was found to have significant adverse impacts on native species cover and vegetation structure, but it also limited establishment of some serious weeds including Pigface (Carpobrotus edulis). Manipulating herbivores in time and space following prescribed fire could be an important and cost‐effective way of maintaining biodiversity values.  相似文献   

7.
There is currently much interest in restoration ecology in identifying native vegetation that can decrease the invasibility by exotic species of environments undergoing restoration. However, uncertainty remains about restoration's ability to limit exotic species, particularly in deserts where facilitative interactions between plants are prevalent. Using candidate native species for restoration in the Mojave Desert of the southwestern U.S.A., we experimentally assembled a range of plant communities from early successional forbs to late‐successional shrubs and assessed which vegetation types reduced the establishment of the priority invasive annuals Bromus rubens (red brome) and Schismus spp. (Mediterranean grass) in control and N‐enriched soils. Compared to early successional grass and shrub and late‐successional shrub communities, an early forb community best resisted invasion, reducing exotic species biomass by 88% (N added) and 97% (no N added) relative to controls (no native plants). In native species monocultures, Sphaeralcea ambigua (desert globemallow), an early successional forb, was the least invasible, reducing exotic biomass by 91%. However, the least‐invaded vegetation types did not reduce soil N or P relative to other vegetation types nor was native plant cover linked to invasibility, suggesting that other traits influenced native‐exotic species interactions. This study provides experimental field evidence that native vegetation types exist that may reduce exotic grass establishment in the Mojave Desert, and that these candidates for restoration are not necessarily late‐successional communities. More generally, results indicate the importance of careful native species selection when exotic species invasions must be constrained for restoration to be successful.  相似文献   

8.
《新西兰生态学杂志》2011,24(2):123-137
Changes in the vegetation of Flat Top Hill, a highly modified conservation area in semi;arid Central Otago, New Zealand, are described four years after the cessation of sheep and rabbit grazing. Unusually moist weather conditions coincide with the four-year period of change in response to the cessation of grazing. Between 1993 and 1997, the average richness and diversity (H') of species increased, and the average proportion of native species decreased significantly. The vegetation was significantly richer in exotic annual and perennial grass species, exotic perennial forbs, exotic woody species and native tussock grasses in 1997 than in 1993. Eight response guilds of species are identified. Most "remnant" native shrubs and forbs were stable, in that they remained restricted to local refugia and showed little change in local frequency. However, taller native grass species increased, some locally, and others over wide environmental ranges. Rare native annual forbs and several native perennial species from "induced" xeric communities decreased, and this may be a consequence of competition from exotic perennial grasses in the absence of grazing. The invasive exotic herb Sedum acre decreased in abundance between 1993 and 1997, but several other prominent exotic species increased substantially in range and local frequency over a wide range of sites. Exotic woody species, and dense, sward-forming grasses are identified as potential threats to native vegetation recovery.  相似文献   

9.
Abstract This study reports on the responses of bird assemblages to woodland clearance, fragmentation and habitat disturbance in central Queensland Australia, a region exposed to very high rates of vegetation clearance over the last two to three decades. Many previous studies of clearing impacts have considered situations where there is a very sharp management contrast between uncleared lands and cleared areas: in this situation, the contrast is more muted, because both cleared lands and uncleared savanna woodlands are exposed to cattle grazing, invasion by the exotic grass Cenchrus ciliaris and similar fire management. Bird species richness (at the scale of a 1‐ha quadrat) was least in cleared areas (8.1 species), then regrowth areas (14.6 species), then uncleared woodlands (19.9 species). Richness at this scale was unrelated to woodland fragment size, connectivity or habitat condition; but declined significantly with increasing abundance of miners (interspecifically aggressive colonial honeyeaters). At whole of patch scale, richness increased with fragment size and decreased with abundance of miners. This study demonstrates complex responses of individual bird species to a regional management cocktail of disturbance elements. Of 71 individual bird species modelled for woodland fragment sites, the quadrat‐level abundance of 40 species was significantly related to at least one variable representing environmental position (across a rainfall gradient), fragment condition, fragment size and/or connectivity. This study suggests that priorities for conservation management include: cessation of broad‐scale clearing; increased protection for regrowth (particularly where this may bolster connectivity and/or size of woodland fragments); control of miners; maintenance of fallen woody debris in woodlands; increase in fire frequency; and reduction in the incidence of grazing and exotic pasture grass.  相似文献   

10.
In grassland reserves, managed disturbance is often necessary to maintain plant species diversity. We carried out experiments to determine the impact of fire, kangaroo grazing, mowing and disc ploughing on grassland species richness and composition in a nature reserve in semi‐arid eastern Australia. Vegetation response was influenced by winter–spring drought after establishment of the experiments, but moderate rainfall followed in late summer–autumn. Species composition varied greatly between sampling times, and the variability due to rainfall differences between seasons and years was greater than the effects of fire, kangaroo grazing, mowing or disc ploughing. In the fire experiment, species richness and composition recovered more rapidly after spring than autumn burning. Species richness and composition were similar to control sites within 12 months of burning and mowing, suggesting that removal of the dominant grass canopy is unnecessary to enhance plant diversity. Two fires (separated by 3 years) and post‐fire kangaroo grazing had only minor influence on species richness and composition. Even disc ploughing caused only a small reduction in native richness. The minor impact of ploughing was explained by the small areas that were ploughed, the once‐off nature of the treatment, and the high degree of natural movement and cracking in these shrink‐swell soils. Recovery of the composition and richness of these grasslands was rapid because of the high proportion of perennial species that resprout vegetatively after fire and mowing. There appears to be little conservation benefit from fire, mowing or ploughing ungrazed areas, as we could identify no native plant species dependent on frequent disturbance for persistence in this grassland community. However, the ability of the Astrebla‐ and Dichanthium‐dominated grasslands to recover quickly after disturbance, given favourable seasonal conditions, suggests that they are well adapted to natural disturbances (e.g. droughts, fire, flooding and native grazing).  相似文献   

11.
The Loess Plateau is a special natural–cultural unit in northern China. Intensive land use in the past has had, and forestation and grass planting at present will have inevitable impacts on plant biodiversity in the Loess Plateau. Based on the analysis of floristic features within three sampling sites with different land use practices and analysis of species richness among different land use types, we discuss impacts of land use on species richness and floristic features in the Northern Loess Plateau. The results drawn from this case study are as follows: (1) It appears that forestation and grass planting have had a positive influence on the local species diversity, but they have contributed little to the native vegetation in terms of conserving its floristic features. (2) Caragana intermedia shrubland, Pinus tabulaeformis forestland, and natural grassland have made important contributions to supporting indigenous species and maintaining local plant biodiversity. (3) There is a significant positive correlation between land use diversity and species richness. These results imply that practicing biodiversity conservation in situ is feasible and the suitable choice for the Loess Plateau. Concrete measures for biodiversity conservation in the area can include setting up small nature reserves and diversifying land use patterns to maintain as much habitat as possible for native vegetation. The artificial Hippophae rhamnoides shrubland should not be further promoted, considering its negative influence on biodiversity conservation.  相似文献   

12.
In this article we report the results of an experiment introducing 17 native shrub and tree species into a Brazilian restinga (i.e., coastal sandy plain vegetation). Restingas have been affected by human impact for about 8,000 years, and human occupation for housing, tourism, and land speculation has recently increased in such a way that there is a need for conservation of remnant patches and restoration of degraded areas throughout the coast to protect biodiversity. Our study site is a remnant located in Rio de Janeiro, the second largest city in the country, and has been subjected in the past to deforestation, man‐made fire, and sand extraction. Although trees and shrubs predominantly compose natural restinga vegetation, local vegetation after impact was replaced by an exotic grass cover, which meant a drastic reduction in species richness. Thus, in this experiment we removed the grass cover, introduced shrub and tree species, and monitored survival and growth of 20 plants per species for 2 years. Despite the adversities imposed by the nutrient‐poor sandy soil, 70% of the species showed high survival percentage and considerable growth. This report on restoration initiatives in the restingas points out the viability of shrub and tree plantation following exotic grass removal as a strategy to restore Brazilian coastal vegetation.  相似文献   

13.
Given that land‐use change is the main cause of global biodiversity decline, there is widespread interest in adopting land‐use practices that maintain high levels of biodiversity, and in restoring degraded land that previously had high biodiversity value. In this study, we use ant taxonomic and functional diversity to examine the effects of different land uses (agriculture, pastoralism, silviculture and conservation) and restoration practices on Cerrado (Brazilian savanna) biodiversity. We also examine the extent to which ant diversity and composition can be explained by vegetation attributes that apply across the full land management spectrum. We surveyed vegetation attributes and ant communities in five replicate plots of each of 13 land‐use and restoration treatments, including two types of native vegetation as reference sites: cerrado sensu stricto and cerradão. Several land‐use and restoration treatments had comparable plot richness to that of the native reference habitats. Ant species and functional composition varied systematically among land‐use treatments following a gradient from open habitats such as agricultural fields to forested sites. Tree basal area and grass cover were the strongest predictors of ant species richness. Losses in ant diversity were higher in land‐use systems that transform vegetation structure. Among productive systems, therefore, uncleared pastures and old pine plantations had similar species composition to that occurring in cerrado sensu stricto. Restoration techniques currently applied to sites that were previously Cerrado have focused on returning tree cover, and have failed to restore ant communities typical of savanna. To improve restoration outcomes for Cerrado biodiversity, greater attention needs to be paid to the re‐establishment and maintenance of the grass layer, which requires frequent fire. At the broader scale, conservation planning in agricultural landscapes, should recognize the value of land‐use mosaics and the risks of homogenization.  相似文献   

14.
Grasslands dominated by exotic annual grasses have replaced native perennial vegetation types in vast areas of California. Prescribed spring fires can cause a temporary replacement of exotic annual grasses by native and non‐native forbs, but generally do not lead to recovery of native perennials, especially where these have been entirely displaced for many years. Successful reintroduction of perennial species after fire depends on establishment in the postfire environment. We studied the effects of vegetation changes after an April fire on competition for soil moisture, a key factor in exotic annual grass dominance. As an alternative to fire, solarization effectively kills seeds of most plant species but with a high labor investment per area. We compared the burn to solarization in a study of establishment and growth of seeds and transplants of the native perennial grass Purple needlegrass (Nassella pulchra) and coastal sage species California sagebrush (Artemisia californica). After the fire, initial seed bank and seedling densities and regular percent cover and soil moisture (0–20 cm) data were collected in burned and unburned areas. Burned areas had 96% fewer viable seeds of the dominant annual grass, Ripgut brome (Bromus diandrus), leading to replacement by forbs from the seed bank, especially non‐native Black mustard (Brassica nigra). In the early growing season, B. diandrus dominating unburned areas consistently depleted soil moisture to a greater extent between rains than forbs in burned areas. However, B. diandrus senesced early, leaving more moisture available in unburned areas after late‐season rains. Nassella pulchra and A. californica established better on plots treated with fire and/or solarization than on untreated plots. We conclude that both spring burns and solarization can produce conditions where native perennials can establish in annual grasslands. However, the relative contribution of these treatments to restoration appears to depend on the native species being reintroduced, and the long‐term success of these initial restoration experiments remains to be determined.  相似文献   

15.
The impact that an exotic species can have on the composition of the community it enters is a function of its abundance, its particular species traits and characteristics of the recipient community. In this study we examined species composition in 14 sites burned in fires fuelled by non‐indigenous C4 grasses in Hawaii Volcanoes National Park, Hawaii. We considered fire intensity, time since fire, climatic zone of site, unburned grass cover, unburned native cover and identity of the most abundant exotic grass in the adjacent unburned site as potential predictor variables of the impact of fire upon native species. We found that climatic zone was the single best variable for explaining variation in native cover among burned sites and between burned and unburned pairs. Fire in the eastern coastal lowlands had a very small effect on native plant cover and often stimulated native species regeneration, whereas fire in the seasonal submontane zone consistently caused a decline in native species cover and almost no species were fire tolerant. The dominant shrub, Styphelia tameiameia, in particular was fire intolerant. The number of years since fire, fire intensity and native cover in reference sites were not significantly correlated with native species cover in burned sites. The particular species of grass that carried the fire did however, have a significant effect on native species recovery. Where the African grass Melinis minutiflora was a dominant or codominant species, fire impacts were more severe than where it was absent regardless of climate zone. Overall, the impacts of exotic grass‐fuelled fires on native species composition and cover in seasonally dry Hawaiian ecosystems was context specific. This specificity is best explained by differences between the climatic zones in which fire occurred. Elevation was the main physical variable that differed among the climatic zones and it alone could explain a large percentage of the variation in native cover among sites. Rainfall, by contrast, did not vary systematically with elevation. Elevation is associated with differences in composition of the native species assemblages. In the coastal lowlands, the native grass Heteropogon contortus, was largely responsible for positive changes in native cover after fire although other native species also increased. Like the exotic grasses, this species is a perennial C4 grass. It is lacking in the submontane zone and there are no comparable native species there and almost all native species in the submontane zone were reduced by fire. The lack of fire tolerant species in the submontane zone thus clearly contributes to the devastating impact of fire upon native cover there.  相似文献   

16.
Abstract The effects of an unusual high frequency mowing regime, which involved the removal of slash, were compared to moderate grazing through the method of paired quadrats across a fenceline, which was orthogonal to a weak environmental gradient. The mown plots proved superior in their conservation characteristics to the moderately grazed plots. The mowing regime produced greater cover of rare or threatened species, greater native cover and lesser exotic grass cover. It thus presents an opportunity for maintaining or improving the condition of previously grazed remnants in reserves without resorting to the use of stock or fire for biomass reduction.  相似文献   

17.
Abstract As well as being important components of biodiversity in their own right, plants reflect the physical environment, are the primary target of many of the pressures acting on rangelands, and are relatively amenable to measurement. Hence, measurements based on plants have considerable potential to be efficient indicators of the response of rangeland biodiversity to land use. A recent report commissioned by the National Land and Water Resources Audit recommended a core set of 11 indicators, six of which relied on measurements of plants. These were trends in (i) the extent of clearing; (ii) the cover of native perennial ground‐layer vegetation; (iii) the distribution and abundance of exotic plant species; (iv) the distribution and abundance of fire‐sensitive species; (v) the distribution and abundance of grazing‐sensitive species; and (vi) the distribution and abundance of listed threatened entities. Most indicated responses of plants to pressures acting on them. Only two (clearing and exotic plants) related to pressures. We recommend that the set be expanded to include two additional pressure indicators, one for grazing and another for fire, in recognition of their extent and potential influence on rangeland biodiversity. We also recommend that benchmark sites be included in all ground‐based monitoring programmes to provide reference standards for those biotic indicators about which little is known. Assessments of the current state of knowledge about these indicators for two case‐study regions, the Gascoyne–Murchison strategy area and Cape York Peninsula, have shown that it would be possible to monitor most of them directly at regional scales, but that current monitoring programmes fall short of achieving this.  相似文献   

18.
Abstract Exotic plant invasions are a significant problem in urban bushland in Sydney, Australia. In low‐nutrient Hawkesbury Sandstone communities, invasive plants are often associated with urban run‐off and subsequent increases in soil nutrients, particularly phosphorus. Fire is an important aspect of community dynamics in Sydney vegetation, and is sometimes used in bush regeneration projects as a tool for weed control. This study addressed the question: ‘Are there differences in post‐fire resprouting and germination of native and exotic species in nutrient‐enriched communities, compared with communities not disturbed by nutrient enrichment?’ We found that in non‐enriched areas, few exotic species emerged, and those that did were unable to achieve the rapid growth that was seen in exotic plants in the nutrient‐enriched areas. Therefore, fire did not promote the invasion of exotic plants into areas that were not nutrient‐enriched. In nutrient‐enriched areas after fire, the diversity of native species was lower than in the non‐enriched areas. Some native species were able to survive and compete with the exotic species in terms of abundance, per cent cover and plant height. However, these successful species were a different suite of natives to those commonly found in the non‐enriched areas. We suggest that although fire can be a useful tool for short‐term removal of exotic plant biomass from nutrient‐enriched areas, it does not promote establishment of native species that were not already present.  相似文献   

19.
Summary Since the mid 1990s, there has been a significant increase in the area of semi‐arid grasslands included in the National Reserve Systems in the Victorian Riverine Plain. This expansion has not been matched by an improved understanding of the alternate disturbance regimes that might produce better outcomes for native ecosystem conservation. Over the past 150 years, stock grazing has completely replaced fire in these grasslands. As a result, the impact of fire on native (and exotic) plant biodiversity is little understood. This study compared the current grazing regime (i.e. ‘status quo’) with burning and the removal of grazing (‘deferred’ management) across three grasslands in the Victorian Riverine Plain to determine the effects of short‐term exposure to alternate disturbances on community structure. Our results showed little change in species density, composition or abundance under the three disturbance treatments. A long exposure to stock grazing may have reduced the abundance of species likely to respond positively to burning. The cover of the biological soil crust responded positively to fire; such changes are known to significantly influence establishment and the functional composition of communities. As such, further investigation of the functional attributes of these communities may broaden our understanding of short‐term responses to alternate disturbance events. To better understand the utility of fire as a management tool, a long‐term commitment to expanding the implementation of this regime from its current extent will greatly increase the understanding of alternate disturbances in this landscape.  相似文献   

20.
The effects of stock grazing on native grassy ecosystems in temperate southern Australia are well documented. However, less is known about the potential of ecosystems to recover after a long history of stock grazing and, in particular, whether the removal of stock will have positive, negative or neutral impacts on biodiversity. We examined the response of understorey vegetation to the removal of sheep grazing in a herb‐rich Eucalyptus camaldulensis (red gum) woodland in western Victoria. Using a space‐for‐time chronosequence, woodlands were stratified into groups based on their time‐since‐grazing removal; these were long‐ungrazed (>20 years), intermediate‐time‐since‐grazing (9–14 years), recently ungrazed (5 years) and continuously grazed. We found significantly higher species density in long‐ungrazed sites relative to sites with a more recent grazing history. No differences were found in species density between continuously grazed sites and those ungrazed in the previous 14 years. Species composition differed with time‐since‐grazing removal and indicator species analysis detected several native species (including tall native geophytes and herbs) associated with long‐ungrazed sites that were absent or in low abundance in the more recently grazed sites. Seven of the eight species significantly associated with continuously grazed sites were exotic. Removal of sheep grazing in red gum woodlands can have positive benefits for understorey diversity but it is likely that recovery of key indicators such as native species will be slow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号