首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
哺乳动物印记域DLK1-DIO3的研究进展   总被引:4,自引:0,他引:4  
赵丽霞  赵高平  周欢敏 《遗传》2010,32(8):769-778
DLK1-DIO3印记域定位于人14号染色体、小鼠12号染色体及绵羊18号染色体远端, 在真哺乳亚纲动物中印记保守。该印记域包含3个编码蛋白的父系表达基因Dlk1、Rtl1和Dio3以及若干大小不同的母系表达印记非编码RNA, 如miRNAs、snoRNAs 和大型非编码RNA Gtl2等。人和小鼠该印记域内印记基因剂量的改变将导致严重的表型异常甚至胚胎致死, 暗示正常的发育需要域内印记基因的正常表达。文章重点论述了哺乳动物DLK1-DIO3印记域的印记调控机制和域内印记基因及其功能的研究进展。  相似文献   

2.
3.
4.
The distal part of the mouse Chr 12 contains a cluster of reciprocally imprinted genes. Recently we found a grandparental origin-dependent, transmission-ratio distortion (TRD) in this region. The TRD resulted from postimplantation loss of embryos that inherited the distal Chr 12 alleles from the maternal grandfather. These data suggested that imprinting of one or more genes in this region was not uniformly well established or maintained in all the embryos. To elucidate the mechanism underlying such a variation, we examined the expression of two genes from the distal Chr 12 imprinted region, the maternally expressed gene 3/gene-trap locus 2 ( Meg3/ Gtl2), and the delta-like homolog 1 ( Dlk1) gene. We demonstrated that the Meg3/ Gtl2 gene had two major mRNA forms. One form, Meg3-proximal ( Meg3p), contained exons 1-3. The second form, Meg3-distal ( Meg3d) did not contain exons 1-3 and was present in oocytes and in 1- and 2-cell embryos. We observed cross-dependent and splice form-specific relaxation of imprinting of the Dlk1 and Meg3d, but not Meg3p. Expression patterns of Dlk1 and Meg3/ Gtl2 in embryos from crosses between different mouse strains suggest that 1). imprinting of the Dlk1 and Meg3/ Gtl2 genes is not strictly coordi- nated; 2). parental origin-dependent expression of these genes is under control of a strain-specific, cis-acting modifier located in a 1.5-Mb region that includes the Meg3/ Gtl2-Dlk1 locus. Biallelic expression of Dlk1 and Meg3d did not affect embryo viability and, therefore, cannot be responsible for the lethal phenotypes in UPD12 embryos or for the transmission-ratio distortion.  相似文献   

5.
6.
Genomic imprinting is a normal process that causes genes to be expressed according to parental origin. The selective advantage conferred by imprinting is not understood but is hypothesised to act on dosage-critical genes. Here, we report a unique model in which the consequences of a single, double, and triple dosage of the imprinted Dlk1/Pref1, normally repressed on the maternally inherited chromosome, can be assessed in the growing embryo. BAC-transgenic mice were generated that over-express Dlk1 from endogenous regulators at all sites of embryonic activity. Triple dosage causes lethality associated with major organ abnormalities. Embryos expressing a double dose of Dlk1, recapitulating loss of imprinting, are growth enhanced but fail to thrive in early life, despite the early growth advantage. Thus, any benefit conferred by increased embryonic size is offset by postnatal lethality. We propose a negative correlation between gene dosage and survival that fixes an upper limit on growth promotion by Dlk1, and we hypothesize that trade-off between growth and lethality might have driven imprinting at this locus.  相似文献   

7.
Localizing transcriptional regulatory elements at the mouse Dlk1 locus   总被引:1,自引:0,他引:1  
Much effort has focused recently on determining the mechanisms that control the allele-specific expression of genes subject to genomic imprinting, yet imprinting regulation is only one aspect of configuring appropriate expression of these genes. Imprinting control mechanisms must interact with those regulating the tissue-specific expression pattern of each imprinted gene in a cluster. Proper expression of the imprinted Delta-like 1 (Dlk1)-Maternally expressed gene 3 (Meg3) gene pair is required for normal fetal development in mammals, yet the mechanisms that control tissue-specific expression of these genes are unknown. We have used a combination of in vivo and in vitro expression assays to localize cis-regulatory elements that may regulate Dlk1 expression in the mouse embryo. A bacterial artificial chromosome transgene encompassing the Dlk1 gene and 77 kb of flanking sequence conferred expression in most endogenous Dlk1-expressing tissues. In combination with previous transgenic data, these experiments localize the majority of Dlk1 cis-regulatory elements to a 41 kb region upstream of the gene. Cross-species sequence conservation was used to further define potential regulatory elements, several of which functioned as enhancers in a luciferase expression assay. Two of these elements were able to drive expression of a lacZ reporter transgene in Dlk1-expressing tissues in the mouse embryo. The sequence proximal to Dlk1 therefore contains at least two discrete regions that may regulate tissue-specificity of Dlk1 expression.  相似文献   

8.
The study of genomic imprinting requires the use of DNA sequence polymorphisms between interfertile mouse species or strains. Most commonly, crosses between Mus musculus domesticus and Mus musculus castaneus or Mus spretus animals are used. Difficulties arise in the maintenance of these wild-derived mice in conventional animal facilities, however, and can be overcome by the use of a congenic strain for the region under study. We describe here the generation of a new mouse line, congenic for a region on distal Chromosome (Chr) 12 that encompasses the Dlk1–Gtl2 imprinted domain. We have taken a first step towards demonstrating the utility of these animals by assaying known genes located within the congenic interval for imprinted expression. We show that the two genes located immediately proximal to Dlk1, the Yy1 and Wars genes, are expressed in a biallelic manner. In addition, we have analyzed the Dio3 gene, located distal to Gtl2. This gene displays preferential expression of the paternal allele, with approximately 75% of the total message level originating from the paternal allele and 25% originating from the maternal allele. These data delineate the position of the Wars gene as the proximal boundary of the Dlk1–Gtl2 imprinted domain, and identify Dio3 as another potentially imprinted gene within this domain.  相似文献   

9.
Genomic imprinting is an epigenetic mechanism controlling parental-origin-specific gene expression. Perturbing the parental origin of the distal portion of mouse chromosome 12 causes alterations in the dosage of imprinted genes resulting in embryonic lethality and developmental abnormalities of both embryo and placenta. A 1 Mb imprinted domain identified on distal chromosome 12 contains three paternally expressed protein-coding genes and multiple non-coding RNA genes, including snoRNAs and microRNAs, expressed from the maternally inherited chromosome. An intergenic, parental-origin-specific differentially methylated region, the IG-DMR, which is unmethylated on the maternally inherited chromosome, is necessary for the repression of the paternally expressed protein-coding genes and for activation of the maternally expressed non-coding RNAs: its absence causes the maternal chromosome to behave like the paternally inherited one. Here, we characterise the developmental consequences of this epigenotype switch and compare these with phenotypes associated with paternal uniparental disomy of mouse chromosome 12. The results show that the embryonic defects described for uniparental disomy embryos can be attributed to this one cluster of imprinted genes on distal chromosome 12 and that these defects alone, and not the mutant placenta, can cause prenatal lethality. In the placenta, the absence of the IG-DMR has no phenotypic consequence. Loss of repression of the protein-coding genes occurs but the non-coding RNAs are not repressed on the maternally inherited chromosome. This indicates that the mechanism of action of the IG-DMR is different in the embryo and the placenta and suggests that the epigenetic control of imprinting differs in these two lineages.  相似文献   

10.
Dlk1 and Gtl2 are reciprocally expressed imprinted genes located on mouse chromosome 12. The Dlk1-Gtl2 locus carries three differentially methylated regions (DMRs), which are methylated only on the paternal allele. Of these, the intergenic (IG) DMR, located 12 kb upstream of Gtl2, is required for proper imprinting of linked genes on the maternal chromosome, while the Gtl2 DMR, located across the promoter of the Gtl2 gene, is implicated in imprinting on both parental chromosomes. In addition to DNA methylation, modification of histone proteins is also an important regulator of imprinted gene expression. Chromatin immunoprecipitation was therefore used to examine the pattern of histone modifications across the IG and Gtl2 DMRs. The data show maternal-specific histone acetylation at the Gtl2 DMR, but not at the IG DMR. In contrast, only low levels of histone methylation were observed throughout the region, and there was no difference between the two parental alleles. An existing mouse line carrying a deletion/insertion upstream of Gtl2 is unable to imprint the Dlk1-Gtl2 locus properly and demonstrates loss of allele-specific methylation at the Gtl2 DMR. Further analysis of these animals now shows that the loss of allele-specific methylation is accompanied by increased paternal histone acetylation at the Gtl2 DMR, with the activated paternal allele adopting a maternal acetylation pattern. These data indicate that interactions between DNA methylation and histone acetylation are involved in regulating the imprinting of the Dlk1-Gtl2 locus.  相似文献   

11.
The regulation of genomic imprinting, the allele-specific expression of an autosomal gene, is complex and poorly understood. Imprinted genes are organized in clusters, where cis-acting regulatory elements are believed to interact to control multiple genes. We have used BAC transgenesis in the mouse to begin to delineate the region of DNA required for proper expression and imprinting of the mouse Delta-like1 (Dlk1) and Gene-trap locus2 (Gtl2) imprinted genes. We demonstrate that the Gtl2 gene is expressed from a BAC transgene in mouse embryo and placenta only upon maternal inheritance, as is the endogenous Gtl2 gene. Gtl2 is therefore properly imprinted on the BAC in an ectopic chromosomal location and must carry with it all necessary imprinting regulatory elements. Furthermore, we show that the BAC Gtl2 gene is expressed at levels approaching those of the endogenous gene only in the brain of adult animals, not in other sites of endogenous expression such as the pituitary, adrenal, and skeletal muscle. These data localize the enhancer(s) for brain Gtl2 expression, but not those for other tissues, to the DNA contained within the BAC clone. As the Dlk1 gene is not expressed from the BAC in any tissues, it must require additional elements that are different from those necessary for Gtl2 expression. Our data refine the interval for future investigation of Gtl2 imprinting and provide evidence for distinct regulation of the linked Dlk1 and Gtl2 genes.  相似文献   

12.
Wu MY  Jiang M  Zhai X  Beaudet AL  Wu RC 《PloS one》2012,7(4):e34348
Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin. Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted gene expression from paternal and maternal chromosome 15q11-q13, respectively. Imprinted genes at the PWS/AS domain are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression. Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to rescue postnatal lethality and growth retardation in two PWS mouse models. These findings open the opportunity for a novel approach to the treatment of PWS.  相似文献   

13.
14.
15.
Mammalian development is strongly influenced by the epigenetic phenomenon called genomic imprinting, in which either the paternal or the maternal allele of imprinted genes is expressed. Paternally expressed Xist, an imprinted gene, has been considered as a single cis-acting factor to inactivate the paternally inherited X chromosome (Xp) in preimplantation mouse embryos. This means that X-chromosome inactivation also entails gene imprinting at a very early developmental stage. However, the precise mechanism of imprinted X-chromosome inactivation remains unknown and there is little information about imprinted genes on X chromosomes. In this study, we examined whether there are other imprinted genes than Xist expressed from the inactive paternal X chromosome and expressed in female embryos at the preimplantation stage. We focused on small RNAs and compared their expression patterns between sexes by tagging the female X chromosome with green fluorescent protein. As a result, we identified two micro (mi)RNAs–miR-374-5p and miR-421-3p–mapped adjacent to Xist that were predominantly expressed in female blastocysts. Allelic expression analysis revealed that these miRNAs were indeed imprinted and expressed from the Xp. Further analysis of the imprinting status of adjacent locus led to the discovery of a large cluster of imprinted genes expressed from the Xp: Jpx, Ftx and Zcchc13. To our knowledge, this is the first identified cluster of imprinted genes in the cis-acting regulatory region termed the X-inactivation center. This finding may help in understanding the molecular mechanisms regulating imprinted X-chromosome inactivation during early mammalian development.  相似文献   

16.
17.
18.
The mouse chromosome 7C, orthologous to the human 15q11–q13 has an imprinted domain, where most of the genes are expressed only from the paternal allele. The imprinted domain contains paternally expressed genes, Snurf/Snrpn, Ndn, Magel2, Mkrn3, and Frat3, C/D-box small nucleolar RNAs (snoRNAs), and the maternally expressed gene, Ube3a. Imprinted expression in this large (approximately 3–4 Mb) domain is coordinated by a bipartite cis-acting imprinting center (IC), located upstream of the Snurf/Snrpn gene. The molecular mechanism how IC regulates gene expression of the whole domain remains partially understood. Here we analyzed the relationship between imprinted gene expression and DNA methylation in the mouse chromosome 7C using DNA methyltransferase 1 (DNMT1)-null mutant embryos carrying Dnmt1ps alleles, which show global loss of DNA methylation and embryonic lethality. In the DNMT1-null embryos at embryonic day 9.5, the paternally expressed genes were biallelically expressed. Bisulfite DNA methylation analysis revealed loss of methylation on the maternal allele in the promoter regions of the genes. These results demonstrate that DNMT1 is necessary for monoallelic expression of the imprinted genes in the chromosome 7C domain, suggesting that DNA methylation in the secondary differentially methylated regions (DMRs), which are acquired during development serves primarily to control the imprinted expression from the maternal allele in the mouse chromosome 7C.  相似文献   

19.
20.
Mechanism of imprinting on mouse distal chromosome 7   总被引:3,自引:0,他引:3  
Genomic imprinting is an epigenetic mode of gene regulation that results in expression of the autosomal 'imprinted' genes from only a single allele, determined exclusively by parental origin. To date over 20 imprinted genes have been identified in mouse and man and these appear to lie in clusters in restricted regions on a subset of chromosomes. This may be a critical feature of imprinting suggesting a domain-type mode of regulation. Imprinted domains are replicated asynchronously, show sex-specific meiotic recombination frequencies and have CpG-rich regions that are differentially methylated, often associated with the imprinted genes themselves. Mouse distal chromosome 7 is one such domain, containing at least nine imprinted genes spanning over 1 Mb of DNA. For the maternally expressed p57Kip2 gene, passage through the female germline is essential to generate the active state, whereas passage through the male germline is needed to force the maternally expressed H19 gene into an inactive state. It is therefore possible that the mouse distal chromosome 7 imprinted domain is actually composed of two or more independently regulated subdomains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号