首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
Inhibition of In Vitro Splicing of a Group I Intron of Pneumocystis carinii   总被引:4,自引:0,他引:4  
Unlike its mammalian hosts, the opportunistic fungal pathogen Pneumocystis carinii harbors group I self-splicing introns in its chromosomal genes encoding rRNA. This difference between pathogen and host suggests that intron splicing is a promising target for chemotherapy. We have found that intron splicing in vitro is inhibited by the anti- Pneumocystis agent pentamidine and by a series of pentamidine analogues, as well as by some aminoglycosides, tetracycline, L-arginine and ethidium bromide. Further studies will be needed to determine if this is the mechanism of action of pentamidine against P. carinii .  相似文献   

3.
Y Liu  M Rocourt  S Pan  C Liu    M J Leibowitz 《Nucleic acids research》1992,20(14):3763-3772
The sequence of the coding region of the rRNA operon of rat-derived Pneumocystis carinii has been completed, including the genes for 5.8S and 26S rRNA. These genes show homology to the rRNA genes of yeast, and an apparent group I self-splicing intron is present in the 26S rRNA gene. Like a similar intron in the 16S rRNA gene, this intron is in a phylogenetically conserved region. Variation in the 26S rRNA sequence was noted between P. carinii organisms isolated from two different sources.  相似文献   

4.
A J Thompson  X Yuan  W Kudlicki  D L Herrin 《Gene》1992,119(2):247-251
Several group-I introns have been shown to specifically invade intron-minus alleles of the genes that contain them. This type of intron mobility is referred to as 'intron homing', and depends on restriction endonucleases (ENases) encoded by the mobile introns. The ENase cleaves the intron-minus allele near the site of intron insertion, thereby initiating gene conversion. The 23S (LSU) rRNA-encoding gene (LSU) of the chloroplast genome of Chlamydomonas reinhardtii contains a self-splicing group-I intron (CrLSU) that has a free-standing open reading frame (ORF) of 163 codons. Translation of CrLSU intron RNA in cell-free systems produces a polypeptide of approx. 18 kDa, the size expected for correct translation of the ORF. The in vitro-synthesized 18-kDa protein cleaves plasmid DNA that contains a portion of LSU where the intron normally resides, but lacking the intron itself. Cleavage by the intron-encoded enzyme (I-CreI) occurs 5 bp and 1 bp 3' to the intron insertion site (in the 3'-exon) in the top (/) and bottom (,) strands, respectively, resulting in 4-nt single-stranded overhangs with 3'-OH termini. We also show that the recognition sequence of I-CreI spans the cleavage site and is 24 bp in length (5'-CAAAACGTC,GTGA/GACAGTTTGGT).  相似文献   

5.
J M Burke 《Gene》1988,73(2):273-294
In vivo and in vitro genetic techniques have been widely used to investigate the structure-function relationships and requirements for splicing of group-I introns. Analyses of group-I introns from extremely diverse genetic systems, including fungal mitochondria, protozoan nuclei, and bacteriophages, have yielded results which are complementary and highly consistent. In vivo genetic studies of fungal mitochondrial systems have served to identify cis-acting sequences within mitochondrial introns, and trans-acting protein products of mitochondrial and nuclear genes which are important for splicing, and to show that some mitochondrial introns are mobile genetic elements. In vitro genetic studies of the self-splicing intron within the Tetrahymena thermophila nuclear large ribosomal RNA precursor (Tetrahymena LSU intron) have been used to examine essential and nonessential RNA sequences and structures in RNA-catalyzed splicing. In vivo and in vitro genetic analysis of the intron within the bacteriophage T4 td gene has permitted the detailed examination of mutant phenotypes by analyzing splicing in vivo and self-splicing in vitro. The genetic studies combined with phylogenetic analysis of intron structure based on comparative nucleotide sequence data [Cech 73 (1988) 259-271] and with biochemical data obtained from in vitro splicing experiments have resulted in significant advances in understanding the biology and chemistry of group-I introns.  相似文献   

6.
7.
王亭  陈立红 《微生物学报》2012,52(9):1059-1068
【目的】分析土生空团菌[Cenococcum geophilum Fr.(Cg)]18S rDNA中Ⅰ型内含子的核苷酸序列和二级结构特征,探讨影响土生空团菌遗传多样性的因素。【方法】对23个Cg菌株18S rDNA的3’端进行PCR扩增,对其中14个菌株的扩增片段测序。利用MAGE version 4.0软件构建Neighbor-Joining系统发育树,利用Mfold预测内含子的二级结构。【结果】序列分析表明,19个中国菌株中14个在18S rDNA中有Ⅰ型内含子。结合GenBank中的相关数据,可知Cg菌株18S rDNA中内含子的序列长度为488-590 nt,显示出92.3%-100%的同源性。在其5’端序列比较保守,在3’端序列差异较大。二级结构分析表明Cg菌株18S rDNA中的内含子都有10个配对区(P1-P10),在P5区域由P5,P5a,P5b,P5c,P5d组成,在P9的3’端有2个配对区(P9.1、P9.2)。【结论】来源于不同寄主及地域的Cg菌株有丰富的遗传多样性,本文没发现地理因素和寄主来源对Cg的遗传分化有影响。  相似文献   

8.
9.
《Gene》1997,184(1):55-63
Due to their structural complexity and their evolutionary dimension, rRNAs are the most investigated nucleic acids in prokaryotes, eukaryotes and organelles. However, no complete sequence of a mitochondrial small subunit (SSU) rRNA was available in the basidiomycotina subdivision. The mitochondrial gene encoding the SSU rRNA of the cultivated basidiomycete Agrocybe aegerita was cloned and its complete nucleotide sequence achieved; the 5′- and 3′-ends were localized by nuclease S1 mapping, leading to a size of 3277 nt. The secondary structure of the SSU rRNA (1906 nt in size) possessed all the helices and loops of the prokaryotic model; a unique modification was found in a conserved nucleotide predicted by the model: the nt 487 was A instead of C. The same modification, has been found in all the partial basidiomycete mitochondrial sequences available in databases. The Agrocybe aegerita SSU rRNA was characterized by large and unusual extensions leading to additional helices in the variable domains V4, V6 and V9, which were the longest of the known prokaryotic or mitochondrial SSU rRNAs. Nucleotide sequence analysis indicated a 1371-bp intron, belonging to subgroup-IC2, located in a conserved loop in the 3′-part of the SSU rRNA. This intron, which is the second example reported in a fungal mitochondrial SSU rDNA, encoded a putative protein (407 aa) sharing homologies with endonucleases involved in group-I intron mobility. This report constitutes the first complete mitochondrial SSU rRNA sequence and secondary structure of any member of the basidiomycotina subdivision.  相似文献   

10.
Chlamydia was the only genus in the order Chlamydiales until the recent characterization of Simkania negevensis Z(T) and Parachlamydia acanthamoebae strains. The present study of Chlamydiales 23S ribosomal DNA (rDNA) focuses on a naturally occurring group I intron in the I-CpaI target site of 23S rDNA from S. negevensis. The intron, SnLSU. 1, belonged to the IB4 structural subgroup and was most closely related to large ribosomal subunit introns that express single-motif, LAGLIDADG endonucleases in chloroplasts of algae and in mitochondria of amoebae. RT-PCR and electrophoresis of in vivo rRNA indicated that the intron was not spliced out of the 23S rRNA. The unspliced 658-nt intron is the first group I intron to be found in bacterial rDNA or rRNA, and it may delay the S. negevensis developmental replication cycle by affecting ribosomal function.  相似文献   

11.
The nucleotide sequence of the gene coding for small ribosomal subunit RNA in the basidiomycete Ustilago maydis was determined. It revealed the presence of a group I intron with a length of 411 nucleotides. This is the third occurrence of such an intron discovered in a small subunit rRNA gene encoded by a eukaryotic nuclear genome. The other two occurrences are in Pneumocystis carinii, a fungus of uncertain taxonomic status, and Ankistrodesmus stipitatus, a green alga. The nucleotides of the conserved core structure of 101 group I intron sequences present in different genes and genome types were aligned and their evolutionary relatedness was examined. This revealed a cluster including all group I introns hitherto found in eukaryotic nuclear genes coding for small and large subunit rRNAs. A secondary structure model was designed for the area of the Ustilago maydis small ribosomal subunit RNA precursor where the intron is situated. It shows that the internal guide sequence pairing with the intron boundaries fits between two helices of the small subunit rRNA, and that minimal rearrangement of base pairs suffices to achieve the definitive secondary structure of the 18S rRNA upon splicing.  相似文献   

12.
S Cory  J M Adams 《Cell》1977,11(4):795-805
The organization of the 18S, 28S and 5.8S rRNA genes in the mouse has been elucidated by mapping with restriction endonucleases Eco RI, Hind III and Bam HI. Ribosomal DNA fragments were detected in electrophoretically fractionated digests of total nuclear DNA by in situ hybridization with radioiodinated rRNAs or with complementary RNA synthesized directly on rRNA templates. A map of the rDNA which includes 13 restriction sites was constructed from the sizes of rDNA fragments and their labeling by different probes The map indicates that the rRNA genes lie within remarkably large units of reiterated DNA, at least 44,000 base pairs long. At least two, and possibly four, classes of repeating unit can be distinguished, the heterogeneity probably residing in the very large nontranscribed spacer region. The 5.8S rRNA gene lies in the transcribed region between the 18S and 28S genes.  相似文献   

13.
14.
Although hypotheses have been proposed and developed to interpret the origins and functions of introns, substantial controversies remain about the mechanism of intron evolution. The availability of introns in the intermediate state is quite helpful for resolving this debate. In this study, a new strain of diatom (denominated as DB21‐1) was isolated and identified as Olifantiella sp., which possesses multiple types of 18S rDNAs (obtained from genomic DNA; lengths ranged from 2,056 bp to 2,988 bp). Based on alignments between 18S rDNAs and 18S rRNA (obtained from cDNA; 1,783 bp), seven intron insertion sites (IISs) located in the 18S rDNA were identified, each of which displayed the polymorphism of intron presence/absence. Specific primers around each IIS were designed to amplify the introns and the results indicated that introns in the same IIS varied in lengths, while terminal sequences were conserved. Our study showed that the process of intron loss happens via a series of successive steps, and each step could derive corresponding introns under intermediate states. Moreover, these results indicate that the mechanism of genomic deletion that occurs at DNA level can also lead to exact intron loss.  相似文献   

15.
Self-splicing of the Chlamydomonas chloroplast psbA introns.   总被引:1,自引:0,他引:1       下载免费PDF全文
D L Herrin  Y Bao  A J Thompson    Y F Chen 《The Plant cell》1991,3(10):1095-1107
We used alpha-32P-GTP labeling of total RNA preparations to identify self-splicing group I introns in Chlamydomonas. Several RNAs become labeled with alpha-32P-GTP, a subset of which is not seen with RNA from a mutant that lacks both copies of the psbA gene. Hybridization of the GTP-labeled RNAs to chloroplast DNA indicates that they originate from the psbA and rrn 23S genes, respectively, the only genes known to contain group I introns in this organism. Introns 1, 2, and 3 of psbA (with flanking exon sequences) were subcloned and transcribed in vitro. The synthetic RNAs were found to self-splice; splicing required Mg2+, GTP, and elevated temperature. In addition, the accuracy of self-splicing was confirmed for introns 1 and 2, and intermediates in the splicing reactions were detected. These results, together with our recent data on the 23S intron, indicate that the ability to self-splice is a general feature of Chlamydomonas group I introns. These findings have significant implications for the mechanism of group I intron splicing and evolution in Chlamydomonas and other chloroplast genomes.  相似文献   

16.
The complete nuclear rDNA gene complex of Metarhizium anisopliae var. anisopliae isolate ME1 is 8118bp long and contains the 18S, 5.8S, and 28S rRNA genes as well as the ITS and IGS regions. Variation in the ITS of isolates of M. anisopliae var. anisopliae and one each of Metarhizium anisopliae var. acridum, Metarhizium flavoviride var. flavoviride, and Metarhizium flavoviride var. minus, clustered 39 out of 40 of M. anisopliae var. anisopliae isolates in one clade. Nucleotide sequence variation in the IGS among 21 of M. anisopliae var. anisopliae isolates showing IGS length variation sorted them into three strongly supported clades, which were weakly correlated with insect hosts and were not correlated with geographic location. Two group-I introns, Ma-int4 and Ma-int5, were discovered in the 18S and the 3(') end of the 28S, in M. anisopliae var. anisopliae isolates ITALY-12 and IMBST 9601. The insertion sites and sub-group of these introns correlated with their closest relatives, as judged by phylogenetic analysis of intron nucleotide sequence.  相似文献   

17.
A group IC1 intron occurs in nuclear small-subunit (18S) ribosomal RNA (SSU rRNA) genes of the marine red alga Porphyra spiralis var. amplifolia. This intron occurs at the same position as the self- splicing group IC1 introns in nuclear SSU rDNAs of the fungus Pneumocystis carinii and in the green alga Chlorella ellipsoidea and shares sequence identity with the Pneumocystis carinii intron in domains L1, P1, P2, and L2, outside the conserved core. Three size variants, differing in amount of sequence in L1, exist and are differentially distributed in geographically distinct populations. Preliminary data suggest that the largest variant can self-splice in vitro. Short open reading frames are present but do not correspond to known genes. Repeated nucleotide motifs, reminiscent of duplicated target sites of transposons or Alu elements, are associated with the intron and with one of the variant forms of L1. Insertions are present in nuclear SSU rDNAs of several other Porphyra species and of the red alga Bangia atropurpurea; insertionless rDNA variants also occur in several Porphyra species. Our observations are most readily explained by intron mobility, although it remains unclear how transfer could have been mediated between genomes of organisms as ecologically diverse as marine red algae, freshwater green algae, and a mammalian-pathogenic fungus.   相似文献   

18.
cyt18-1 (299-9) is a nuclear mutant of Neurospora crassa that has been shown to have a temperature-sensitive defect in splicing the mitochondrial large rRNA intron. In the present work, we investigate the effect of the cyt18-1 mutation on splicing of mitochondrial mRNA introns. Two genes were studied in detail; the cytochrome b (cob) gene, which contains two introns, and a "long form" of the cytochrome oxidase subunit I (coI) gene, which contains four introns. We found that splicing of both cob introns and splicing of at least two of the coI introns are strongly inhibited in the mutant, whereas splicing of coI intron 1, which is excised as a 2.6 X 10(3) base circle, is relatively unaffected. The rRNA intron and both cob introns are group I introns, whereas the circular coI intron may belong to another structural class. Control experiments showed that the degree of inhibition of splicing is greater in the mutant than can be accounted for by severe inhibition of mitochondrial protein synthesis. Finally, experiments in which mutant cells were shifted from 25 degrees C to 37 degrees C showed that splicing of the large rRNA precursor and splicing of the coI mRNA precursor are inhibited with similar kinetics. Considered together, our results suggest that the cyt18 gene encodes a trans-acting component that is required for the splicing of group I mitochondrial DNA introns or some subclass thereof. Since Neurospora cob intron 1 has been shown to be self-splicing in vitro, defective splicing of this intron in cyt18-1 indicates that an essentially RNA-catalyzed splicing reaction must be facilitated by a trans-acting factor, presumably a protein, in vivo.  相似文献   

19.
Spliceosomal (pre-mRNA) introns have previously been found in eukaryotic protein-coding genes, in the small nuclear RNAs of some fungi, and in the small- and large-subunit ribosomal DNA genes of a limited number of ascomycetes. How the majority of these introns originate remains an open question because few proven cases of recent and pervasive intron origin have been documented. We report here the widespread occurrence of spliceosomal introns (69 introns at 27 different sites) in the small- and large-subunit nuclear-encoded rDNA of lichen-forming and free-living members of the Ascomycota. Our analyses suggest that these spliceosomal introns are of relatively recent origin, i.e., within the Euascomycetes, and have arisen through aberrant reverse-splicing (in trans) of free pre-mRNA introns into rRNAs. The spliceosome itself, and not an external agent (e.g., transposable elements, group II introns), may have given rise to these introns. A nonrandom sequence pattern was found at sites flanking the rRNA spliceosomal introns. This pattern (AG-intron-G) closely resembles the proto-splice site (MAG-intron-R) postulated for intron insertions in pre-mRNA genes. The clustered positions of spliceosomal introns on secondary structures suggest that particular rRNA regions are preferred sites for insertion through reverse-splicing.  相似文献   

20.
We have analysed the ribosomal DNA of Calliphora erythrocephala, a Dipteran fly of the same sub-order as Drosophila melanogaster, through a series of rDNA2 fragments cloned in a plasmid vector. We have mapped the sites for eight restriction enzymes within these plasmids, and positioned the regions coding for the 18 S and 28 S rRNAs within the maps of selected plasmids using the S1 endonuclease mapping procedure of Berk & Sharp (1977). This analysis establishes that some rDNA cistrons of C. erythrocephala contain an “intron” (Gilbert, 1978) which interrupts the 28 S coding region at the same position as that of D. melanogaster rDNA. Two introns of 2.85 kilobases in length and part of a longer, sequence-related variant were isolated in these cloned fragments. Restriction enzyme site analysis and preliminary hybridization data indicate that the 2.85 kb intron of C. erythrocephala is largely unrelated in sequence to the two classes of D. melanogaster rDNA introns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号