首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 213 毫秒
1.
Exosomes play a crucial role in the crosstalk between cancer associated fibroblasts (CAFs) and cancer cells, contributing to carcinogenesis and the tumour microenvironment. Recent studies have revealed that CAFs, normal fibroblasts and cancer cells all secrete exosomes that contain miRNA, establishing a cell-cell communication network within the tumour microenvironment. For example, miRNA dysregulation in melanoma has been shown to promote CAF activation via induction of epithelial-mesenchymal transition (EMT), which in turn alters the secretory phenotype of CAFs in the stroma. This review assesses the roles of melanoma exosomal miRNAs in CAF formation and how CAF exosome-mediated feedback signalling to melanoma lead to tumour progression and metastasis. Moreover, efforts to exploit exosomal miRNA-mediated network communication between tumour cells and their microenvironment, and their potential as prognostic biomarkers or novel therapeutic targets in melanoma will also be considered.  相似文献   

2.
Nonsmall cell lung cancer (NSCLC) is among the most prevalent malignant tumours threatening human health. In the tumour microenvironment (TME), cancer-associated fibroblasts (CAFs) induce M2-polarized macrophages, which strongly regulate tumour progression. However, little is known about the association between CAFs and M2 macrophages. CD248 is a transmembrane glycoprotein found in several cancer cells, tumour stromal cells, and pericytes. Here, we isolated CAFs from tumour tissues of NSCLC patients to detect the relationship between CD248 expression and patient prognosis. We knocked down the expression of CD248 on CAFs to detect CXCL12 secretion and macrophage polarization. We then examined the effects of CD248-expressing CAF-induced M2 macrophage polarization to promote NSCLC progression in vitro and in vivo. We found that CD248 is expressed mainly in NSCLC-derived CAFs and that the expression of CD248 correlates with poor patient prognosis. Blocking CXCL12 receptor (CXCR4) drastically decreased M2 macrophage chemotaxis. CD248 promotes CAFs secreting CXCL12 to mediate M2-polarized macrophages to promote NSCLC progression both in vitro and in vivo. Collectively, our data suggest that CD248-positive CAFs induce NSCLC progression by mediating M2-polarized macrophages.  相似文献   

3.
《Translational oncology》2022,15(12):101231
Communication networks in the tumor microenvironment (TME) play a crucial role in tumor progression. Cancer-associated fibroblasts (CAFs) are among the most abundant stromal cells in the TME. Bidirectional signal transduction between cancer cells and CAFs within the TME is important for cancer development and treatment responsiveness. Extracellular vesicles (EVs) carrying proteins, miRNAs, and other biomolecules are secreted into the extracellular matrix (ECM), which has been demonstrated to be an important communication medium between tumors and CAFs. Tumors regulate the activation of CAFs by secreting EVs. Conversely, CAFs can also affect tumor proliferation, metastasis, and therapeutic resistance through EVs. Here, we will classify EV cargoes and discuss the role of EV-mediated interactions between CAFs and tumors, reviewing current knowledge in combination with our confirmed results.  相似文献   

4.
《Translational oncology》2021,14(12):101231
Communication networks in the tumor microenvironment (TME) play a crucial role in tumor progression. Cancer-associated fibroblasts (CAFs) are among the most abundant stromal cells in the TME. Bidirectional signal transduction between cancer cells and CAFs within the TME is important for cancer development and treatment responsiveness. Extracellular vesicles (EVs) carrying proteins, miRNAs, and other biomolecules are secreted into the extracellular matrix (ECM), which has been demonstrated to be an important communication medium between tumors and CAFs. Tumors regulate the activation of CAFs by secreting EVs. Conversely, CAFs can also affect tumor proliferation, metastasis, and therapeutic resistance through EVs. Here, we will classify EV cargoes and discuss the role of EV-mediated interactions between CAFs and tumors, reviewing current knowledge in combination with our confirmed results.  相似文献   

5.
The role of cancer‐associated fibroblasts (CAFs) has been thoroughly investigated in tumour microenvironments but not in bladder urothelial carcinoma (BLCA). The cell fraction of CAFs gradually increased with BLCA progression. Weighted gene co‐expression network analysis (WGCNA) revealed a specific gene expression module of CAFs that are relevant to cancer progression and survival status. Fifteen key genes of the module were consistent with a fibroblast signature in single‐cell RNA sequencing, functionally related to the extracellular matrix, and significant in survival analysis and tumour staging. A comparison of the luminal‐infiltrated versus luminal‐papillary subtypes and fibroblast versus urothelial carcinoma cell lines and immunohistochemical data analysis demonstrated that the key genes were specifically expressed in CAFs. Moreover, these genes are highly correlated with previously reported CAF markers. In summary, CAFs play a major role in the progression of BLCA, and the 15 key genes act as BLCA‐specific CAF markers and can predict CAF changes. WGCNA can, therefore, be used to sort CAF‐specific gene set in cancer tissues.  相似文献   

6.
Activation of fibroblasts in cancer stroma   总被引:1,自引:0,他引:1  
Tumor microenvironment has emerged as an important target for cancer therapy. In particular, cancer-associated fibroblasts (CAF) seem to regulate many aspects of tumorigenesis. CAFs secrete a variety of soluble factors that act in a paracrine manner and thus affect not only cancer cells, but also other cell types present in the tumor stroma. Acting on cancer cells, CAFs promote tumor growth and invasion. They also enhance angiogenesis by secreting factors that activate endothelial cells and pericytes. Tumor immunity is mediated via cytokines secreted by immune cells and CAFs. Both immune cells and CAFs can exert tumor-suppressing and -promoting effects. CAFs, and the factors they produce, are attractive targets for cancer therapy, and they have proven to be useful as prognostic markers. In this review we focus mainly on carcinomas and discuss the recent findings regarding the role of activated fibroblasts in driving tumor progression.  相似文献   

7.
Inflammatory cells are involved in tumour initiation and progression. In parallel, the adaptive immune response plays a key role in fighting tumour growth and dissemination. The double‐edged role of the immune system in solid tumours is well represented in colorectal cancer (CRC). The development and progression of CRC are affected by the interactions between the tumour and the host's response, occurring in a milieu named tumour microenvironment. The role of immune cells in human CRC is being unravelled and there is a strong interest in understanding their dynamics as to tumour promotion, immunosurveillance and immunoevasion. A better definition of immune infiltration would be important not only with respect to the ‘natural history’ of CRC, but in a clinically relevant perspective in the 21st century, with respect to its post‐surgical management, including chemotherapy responsiveness. While it is becoming established that the amount of tumour‐infiltrating lymphocytes influences the post‐surgical progression of early‐stage CRC, the relevance of this immune parameter as to chemotherapy responsiveness remains to be clarified. Despite recent experimental work supporting the notion that infiltrating immune cells may influence chemotherapy‐mediated tumour cell death, tumour‐infiltrating cells are not employed to identify patients who are more likely to benefit from adjuvant treatment. This review focuses on studies addressing the role of innate and adaptive immune cells along the occurrence and the progression of potentially curable CRC.  相似文献   

8.

Background

The extensional signals in cross-talk between stromal cells and tumor cells generated from extracellular matrix molecules, soluble factor, and cell-cell adhesion complexes cooperate at the extra- and intracellular level in the tumor microenvironment. CAFs are the primary type of stromal cells in the tumor microenvironment and play a pivotal role in tumorigenesis and development. Hitherto, there is hardly any systematic analysis of the intrinsic relationship between CAFs function and its abnormal signaling pathway. The extreme complexity of CAFs’ features and their role in tumor development are needed to be further investigated.

Methodology/Principal Findings

We primary cultured CAFs and NFs from early stages of breast cancer tissue and identified them using their biomarker by immunohistochemistry for Fibronectin, α-SMA and FAP. Microarray was applied to analyze gene expression profiles of human breast CAFs and the paired NFs. The Up-regulated genes classified by Gene Ontology, signal pathways enriched by DAVID pathway analysis. Abnormal signaling pathways in breast cancer CAFs are involved in cell cycle, cell adhesion, signal transduction and protein transport being reported in CAFs derived from other tumors. Significantly, the altered ATM signaling pathway, a set of cell cycle regulated signaling, and immune associated signaling are identified to be changed in CAFs.

Conclusions/Significance

CAFs have the vigorous ability of proliferation and potential of invasion and migration comparing with NFs. CAFs could promote breast cancer cell invasion under co-culture conditions through up-regulated CCL18 and CXCL12. Consistently with its biologic behavior, the gene expression profiling analyzed by microarray shows that some of key signaling pathways, such as cell cycle, cell adhesion, and secreting factors play an important role in CAFs. The altered ATM signaling pathway is abnormally active in the early stage of breast cancer. The set of immune associated signaling may be involved in tumor cell immune evasion.  相似文献   

9.
胃癌组织中肿瘤相关成纤维细胞(carcinoma associated fibroblasts, CAFs)是胃癌微环境的重要成分,主要来源于正常成纤维细胞(normal fibroblasts, NFs)的活化,对胃癌的发生发展有重要作用,但是两者之间的基因表达差异并不完全清楚。本研究选取从人胃癌组织中分离获得的CAFs及NFs 各3组,进行转录组学研究,筛选出3组细胞中交集且差异倍数较大的基因12个,用Omicsbean在线工具对差异基因进行Gene Ontology (GO)功能及KEGG通路富集,构建蛋白质相互作用调控网络;最后用RT-qPCR验证CAFs和NFs中差异基因的表达。结果显示,筛选出的12个差异表达基因主要参与NF-κB信号、炎症、细胞黏附、细胞表面受体和细胞因子等功能,上述功能均与肿瘤的发生发展密切相关。RT-qPCR检测发现,与NFs相比,CAFs中BCL2A1、NKX3-2、CXCL12、TNFAIP3、FOS、CDH4及CLDN1表达上调;ATF3、CYFIP2、CCL11、KLF2及GDF15基因表达下调,差异均具有统计学意义(P<0.05)。结果提示,胃癌CAFs与NFs中存在肿瘤相关的差异表达基因,这些差异基因可能在胃癌微环境中发挥重要作用。  相似文献   

10.
Cancer progression (initiation, growth, invasion and metastasis) occurs through interactions between malignant cells and the surrounding tumor stromal cells. The tumor microenvironment is comprised of a variety of cell types, such as fibroblasts, immune cells, vascular endothelial cells, pericytes and bone-marrow-derived cells, embedded in the extracellular matrix (ECM). Cancer-associated fibroblasts (CAFs) have a pro-tumorigenic role through the secretion of soluble factors, angiogenesis and ECM remodeling. The experimental models for cancer cell survival, proliferation, migration, and invasion have mostly relied on two-dimensional monocellular and monolayer tissue cultures or Boyden chamber assays. However, these experiments do not precisely reflect the physiological or pathological conditions in a diseased organ. To gain a better understanding of tumor stromal or tumor matrix interactions, multicellular and three-dimensional cultures provide more powerful tools for investigating intercellular communication and ECM-dependent modulation of cancer cell behavior. As a platform for this type of study, we present an experimental model in which cancer cells are cultured on collagen gels embedded with primary cultures of CAFs.  相似文献   

11.
12.
During cancer progression, bone marrow derived myeloid cells, including immature myeloid cells and macrophages, progressively accumulate at the primary tumour site where they contribute to the establishment of a tumour promoting microenvironment. A marked infiltration of macrophages into the stromal compartment and the generation of a desmoplastic stromal reaction is a particular characteristic of pancreatic ductal adenocarcinoma (PDA) and is thought to play a key role in disease progression and its response to therapy. Tumour associated macrophages (TAMs) foster PDA tumour progression by promoting angiogenesis, metastasis, and by suppressing an anti-tumourigenic immune response. Recent work also suggests that TAMs contribute to resistance to chemotherapy and to the emergence of cancer stem-like cells. Here we will review the current understanding of the biology and the pro-tumourigenic functions of TAMs in cancer and specifically in PDA, and highlight potential therapeutic strategies to target TAMs and to improve current therapies for pancreatic cancer. [BMB Reports 2013; 46(3): 131-138]  相似文献   

13.
Cancer-associated fibroblasts (CAFs), the key component in pancreatic tumor microenvironment (TME), originate from many sources and are naturally heterogeneous in phenotype and function. Numerous studies have identified their crucial role in promoting tumorigenesis through many routes including fostering cancer proliferation, angiogenesis, invasion, and metastasis. Conversely, research also indicates that subsets of CAFs express anti-tumor activity. These dual effects reflect the complexity of CAF heterogeneity and their interactions with other cells and factors in pancreatic TME. A critical component in this environment is infiltrated immune cells and immune mediators, which can communicate with CAFs. The crosstalk occurs via the production of various cytokines, chemokines, and other mediators and shapes the immunological state in TME. Comprehensive studies of the crosstalk between CAFs and tumor immune environment, particularly internal mechanisms interlinking CAFs and immune effectors, may provide new approaches for pancreatic ductal adenocarcinoma (PDAC) treatments. In this review, we explore the characteristics of CAFs, describe the interplay among CAFs, infiltrated immune cells, other mediators, and provide an overview of recent CAF-target therapies, their limitations, and potential research directions in CAF in the context of PDAC.  相似文献   

14.
A small percentage of data obtained from animal/2D culture models can be translated to humans. Therefore, there is a need to using native tumour microenvironment mimicking models to improve preclinical screening and reduce this attrition rate. For this purpose, currently, the utilization of organoids is expanding. Tumour organoids can recapitulate tumour microenvironment that is including cancer cells and non-neoplastic host components. Indeed, tumour organoids, both phenotypically and genetically, resemble the tumour tissue that originated from it. The unique properties of the tumour microenvironment can significantly affect drug response and cancer progression. In this review, we will discuss about various organoid culture strategies for modelling the tumour immune microenvironment, their applications and advantages in cancer research such as testing cancer immunotherapeutics, developing novel approaches for personalized medicine, testing drug toxicity, drug screening, study cancer initiation and progression, and we will also review the limitations of organoid culture systems.  相似文献   

15.
The microenvironment of cancer cells has proven to be a critical component of tumors that strongly influences cancer development and progression into invasive and metastatic disease. Compared to normal tissue, dramatic differences in gene expression occur in multiple cell types that constitute the tumor microenvironment including cancer-associated fibroblasts (CAFs) that are important stromal components of growing tumors. In this review, we present recent advances in understanding how microRNAs are deregulated in cancer-associated fibroblasts (CAFs) and how this affects tumor biology. The microRNA signature of CAFs is discussed with respect to their functional relevance to tumor cells as well as other cell types involved in tumor homeostasis.  相似文献   

16.
肿瘤的发展过程与肿瘤微环境密切相关,而肿瘤相关成纤维细胞(CAFs)是上述微环境中最主要的宿主细胞,CAFs是一类不同细胞源性的细胞群,可来源于多种细胞包括静止的成纤维细胞、上皮细胞、内皮细胞和间质干细胞的分化过程。体内和体外生物学实验均证实,成纤维细胞在肿瘤微环境中并不是被动的对肿瘤发展提供支持,而是发挥了至关重要的作用,所以靶向CAFs有望成为肿瘤治疗的新方向,对CAFs相关分子标记物和分子事件的进一步探索将为抗肿瘤的临床治疗提供新的思路。本文将对CAFs的来源以及CAFs对肿瘤发生发展、转移及VEGF耐受等方面的作用做一综述。  相似文献   

17.
Cancer-associated fibroblasts (CAFs) are involved in critical aspects of head and neck squamous cell carcinoma (HNSCC) pathogenesis, such as the formation of a tumor-permissive extracellular matrix structure, angiogenesis, or immune and metabolic reprogramming of the tumor microenvironment (TME), with implications for metastasis and resistance to radiotherapy and chemotherapy. The pleiotropic effect of CAFs in TME is likely to reflect the heterogeneity and plasticity of their population, with context-dependent effects on carcinogenesis. The specific properties of CAFs provide many targetable molecules that could play an important role in the future therapy of HNSCC. In this review article, we will focus on the role of CAFs in the TME of HNSCC tumors. We will also discuss clinically relevant agents targeting CAFs, their signals, and signaling pathways, which are activated by CAFs in cancer cells, with the potential for repurposing for HNSCC therapy.  相似文献   

18.
Exosomes, small extracellular vesicles ranging from 30 to 150 nm, are secreted by various cell types, including tumour cells. Recently, microRNAs (miRNAs) were identified to be encapsulated and hence protected from degradation within exosomes. These exosomal miRNAs can be horizontally transferred to target cells, in which they subsequently modulate biological processes. Increasing evidence indicates that exosomal miRNAs play a critical role in modifying the microenvironment of lung cancers, possibly facilitating progression, invasion, angiogenesis, metastasis and drug resistance. In this review, we summarize the novel findings on exosomal miRNA functions during lung cancer initiation and progression. In addition, we highlight their potential role and challenges as biomarkers in lung cancer diagnosis, prognosis and drug resistance and as therapeutic agents.  相似文献   

19.
20.
The pHs of extracellular fluids (ECFs) in normal tissues are commonly maintained at 7.35 to 7.45. The acidification of the ECF is one of the major characteristics of tumour microenvironment. In this study, we report that decreased extracellular pH promotes the transformation of mesenchymal stem cells (MSCs) into cancer-associated fibroblasts (CAFs), termed CAF activation. Furthermore, we demonstrate that GPR68, a proton-sensing G-protein-coupled receptor (GPCR), is required for the pH-dependent regulation of the differentiation of MSCs into CAFs. We then identify Yes-associated protein 1 (YAP) as a downstream effector of GPR68 for CAF activation. Finally, we show that knockdown of GPR68 in MSCs can prevent the CAF activation under cancer microenvironment. Systemic transplantation of GPR68-silenced MSCs suppresses in-situ tumour growth and prolong life span after cancer graft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号