首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 110 毫秒
1.
Examining differences in colour plasticity between closely‐related species in relation to the heterogeneity of background colours found in their respective habitats may offer important insight into how cryptic colour change evolves in natural populations. In the present study, we examined whether nonbreeding dorsal body coloration has diverged between sympatric species of stickleback along with changes in habitat‐specific background colours. The small, limnetic species primarily occupies the pelagic zone and the large, benthic species inhabits the littoral zone. We placed benthic and limnetic sticklebacks against extremes of habitat background colours and measured their degree of background matching and colour plasticity. Benthics matched the littoral background colour more closely than did the limnetics, although there was no difference between species in their resemblance to the pelagic background colour. Benthics were able to resemble both background colours by exhibiting greater directional colour plasticity in their dorsal body coloration than limnetics, which may be an adaptive response to the greater spectral heterogeneity of the littoral zone. The present study highlights how habitat‐specific spectral characteristics may shape cryptic coloration differences between stickleback species. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 902–914.  相似文献   

2.
Chipps SR  Dunbar JA  Wahl DH 《Oecologia》2004,138(1):32-38
Bluegill sunfish (Lepomis macrochirus) are known to diversify into two forms specialized for foraging on either limnetic or littoral prey. Because juvenile bluegills seek vegetative cover in the presence of largemouth bass (Micropterus salmoides) predators, natural selection should favor the littoral body design at size ranges most vulnerable to predation. Yet within bluegill populations, both limnetic and littoral forms occur where vegetation and predators are present. While adaptive for foraging in different environments, does habitat-linked phenotypic variation also influence predator evasiveness for juvenile bluegills? We evaluate this question by quantifying susceptibility to predation for two groups of morphologically distinct bluegills; a limnetic form characteristic of bluegills inhabiting open water areas (limnetic bluegill) and a littoral form characteristic of bluegills inhabiting dense vegetation (littoral bluegill). In a series of predation trials, we found that bluegill behaviors differed in open water habitat but not in simulated vegetation. In open water habitat, limnetic bluegills formed more dense shoaling aggregations, maintained a larger distance from the predator, and required longer amounts of time to capture than littoral bluegill. When provided with simulated vegetation, largemouth bass spent longer amounts of time pursuing littoral bluegill and captured significantly fewer littoral bluegills than limnetic fish. Hence, morphological and behavioral variation in bluegills was linked to differential susceptibility to predation in open water and vegetated environments. Combined with previous studies, these findings show that morphological and behavioral adaptations enhance both foraging performance and predator evasiveness in different lake habitats.  相似文献   

3.
Phylogenetic hierarchies are often composed of younger diverging lineages nested within older diverging lineages. Comparing phenotypic variation among several hierarchical levels can be used to test hypotheses about selection, phenotypic evolution and speciation. Such hierarchical comparisons have only been performed in threespine stickleback, and so here we use a hierarchical pattern of divergences between near-shore littoral and off-shore pelagic habitats to test for selection on the evolution of body form in Lepomis sunfish in lakes. We compare variation in external body form between fish from littoral and pelagic habitats at three levels: among ecomorphs within individual lake populations (intrapopulation), among populations of the same species in different lakes (interpopulation), and between bluegill and pumpkinseed sunfish species (interspecifically). Using geometric morphometric methods, we first demonstrate that interpopulation variation in mean body form of pumpkinseed sunfish varies with the presence of pelagic habitat. We then incorporate these results with existing data in order to test the similarity of phenotypic divergence between littoral and pelagic habitats at different hierarchical levels. Parallel relationships between certain body form traits (head length, caudal length and pectoral length) and habitat occur at all three levels suggesting that selection persistently acts at all levels to diversify these traits and so may contribute to species formation. For other traits (caudal depth and pectoral altitude), divergence between habitats is inconsistent at different hierarchical levels. Thus, nested biological variation in Lepomid body form reflects a history of deterministic selection and historical contingency, and also identifies traits that likely have likely influenced fitness and so serve important functions.  相似文献   

4.
Parallel phenotypic divergence in replicated adaptive radiations could either result from parallel genetic divergence in response to similar divergent selection regimes or from equivalent phenotypically plastic response to the repeated occurrence of contrasting environments. In post‐glacial fish, replicated divergence in phenotypes along the benthic‐limnetic habitat axis is commonly observed. Here, we use two benthic‐limnetic species pairs of whitefish from two Swiss lakes, raised in a common garden design, with reciprocal food treatments in one species pair, to experimentally measure whether feeding efficiency on benthic prey has a genetic basis or whether it underlies phenotypic plasticity (or both). To do so, we offered experimental fish mosquito larvae, partially burried in sand, and measured multiple feeding efficiency variables. Our results reveal both, genetic divergence as well as phenotypically plastic divergence in feeding efficiency, with the phenotypically benthic species raised on benthic food being the most efficient forager on benthic prey. This indicates that both, divergent natural selection on genetically heritable traits and adaptive phenotypic plasticity, are likely important mechanisms driving phenotypic divergence in adaptive radiation.  相似文献   

5.
Historical and contemporary evolutionary processes can both contribute to patterns of phenotypic variation among populations of a species. Recent studies are revealing how interactions between historical and contemporary processes better explain observed patterns of phenotypic divergence than either process alone. Here, we investigate the roles of evolutionary history and adaptation to current environmental conditions in structuring phenotypic variation among polyphenic populations of sunfish inhabiting 12 postglacial lakes in eastern North America. The pumpkinseed sunfish polyphenism includes sympatric ecomorphs specialized for littoral or pelagic lake habitats. First, we use population genetic methods to test the evolutionary independence of within-lake phenotypic divergences of ecomorphs and to describe patterns of genetic structure among lake populations that clustered into three geographical groupings. We then used multivariate analysis of covariance (MANCOVA) to partition body shape variation (quantified with geometric morphometrics) among the effects of evolutionary history (reflecting phenotypic variation among genetic clusters), the shared phenotypic response of all populations to alternate habitats within lakes (reflecting adaptation to contemporary conditions), and unique phenotypic responses to habitats within lakes nested within genetic clusters. All effects had a significant influence on body form, but the effects of history and the interaction between history and contemporary habitat were larger than contemporary processes in structuring phenotypic variation. This highlights how divergence can be better understood against a known backdrop of evolutionary history.  相似文献   

6.
Synopsis Throughout its range, freshwater populations in the Gasterosteus aculeatus species complex display remarkable differentiation of morphology and behavior, much of which reflects differences in ecological conditions among habitats. We first describe the ecological conditions that have led to morphological and behavioral divergence in two common lake types in British Columbia, Canada. Deep, oligotrophic lakes have favored the evolution of slender fish well adapted for feeding on plankton (limnetic, sensu McPhail 1984), whereas shallow, more eutrophic lakes with extensive littoral zones favor fish that are deeper-bodied and well adapted for feeding on benthic invertebrates. The latter forage in large groups that attack nests guarded by males and cannibalize the young within. Courtship in these lakes is relatively inconspicuous, a feature that apparently enhances nest survivorship. In limnetic populations, this form of cannibalism is usually absent and courtship is conspicuous. Because benthic populations tend to have larger bodies and hence, larger gapes than do limnetic fish we suggest that cannibalism may be facilitated by large body size or a correlated trait. We test this by comparing the morphology of populations exhibiting both group cannibalism and a second kind of cannibalism in which solitary females court males, gain access to nests as a consequence, and then cannibalize eggs without spawning. Our results suggest that differences in body size cannot explain variation among populations in cannibalistic tendencies but that body size may affect the effectiveness of cannibalism by females within populations.  相似文献   

7.
Morphological plasticity can influence adaptive divergence when it affects fitness components such as foraging performance. We induced morphological variation in pumpkinseed sunfish (Lepomis gibbosus) ecomorphs and tested for effects on foraging performance. Young-of-year pumpkinseed sunfish from littoral and pelagic lake habitats were reared each on a 'specialist diet' representing their native habitat-specific prey, or a 'generalist diet' reflecting a combination of native and non-native prey. Specialist and generalist diets, respectively, induced divergent and intermediate body forms. Specialists had the highest capture success on their native prey whereas generalist forms were inferior. Specialists faced trade-offs across prey types. However, pelagic specialists also had the highest intake rate on both prey types suggesting that foraging trade-offs are relaxed when prey are abundant. This increases the likelihood of a resource polymorphism because the specialized pelagic form can be favoured by directional selection when prey are abundant and by diversifying selection when prey resources are restricted.  相似文献   

8.
McCairns RJ  Fox MG 《Oecologia》2004,140(2):271-279
We investigated habitat selection in a trophically dimorphic population of pumpkinseed sunfish (Lepomis gibbosus) to determine whether littoral and limnetic ecotypes exhibit habitat or site fidelity. A transplant experiment was conducted, in which 998 pumpkinseeds captured from littoral and limnetic sites were marked and released in either the site of capture, the nearest site of the same habitat type, or the nearest site of the opposite habitat type. Daily recapture attempts over the course of the reproductive and growing season provided a 25% recapture rate, 40% of which were recaptured on multiple occasions at the same site. Site fidelity was very high in both ecotypes. Results estimated with a multi-state transition model indicated that the probability of a transplanted pumpkinseed returning to its site of origin ranged from 74% for limnetic pumpkinseeds released into a different limnetic or littoral site, to 93% for littoral pumpkinseeds released into a limnetic site. Furthermore, the probability of a pumpkinseed being recaptured at its site of origin if not transplanted was estimated at 97 and 98% for limnetic individuals and littoral individuals, respectively. Discriminant Function Analysis of helminth parasite loads sampled from littoral and limnetic individuals could classify site of origin with 96–100% accuracy, suggesting that the habitat and site fidelity patterns observed with mark–recapture are indicative of long-term habitat segregation of the two forms. The results of our experiment provide compelling evidence of correlated habitat selection as a function of home range fidelity within both ecotypes of a subtly dimorphic species. Such behaviour could have a significant effect on present or future gene flow.  相似文献   

9.
The strength of predation impact on recipient environments may vary among introduced populations due to their local adaptations to different prey. We examined whether functional diversification associated with morphological differences may be observed among the introduced populations of invasive bluegill sunfish Lepomis macrochirus (Perciformes, Centrarchidae) in Japan. The two examined populations are morphologically different, although they were recently derived from a common American source and colonized in different lakes. We performed a laboratory experiment wherein these populations were fed the benthic (chironomid larva) and the pelagic prey (daphnid zooplankton). The results revealed that a population colonizing in a shallower lake and foraging on benthic invertebrates in the wild had a greater impact on the benthic prey, whereas the other population colonizing in a deeper lake and foraging on crustacean zooplankton have consumed the pelagic prey more efficiently. A series of regression analyses showed that morphological differences among individuals were responsible for these population differences. The evidence obtained suggests that morphological adaptations by introduced bluegill populations enhance the strength of predation impact on a prey resource consumed in a relevant environment, but reduce the impact on the other prey. Thus, although the introduced Japanese populations were recently derived from a common ancestor, the predation impacts on the native prey community vary due to morphological adaptations to different prey.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 91 , 601–610.  相似文献   

10.
Disruptive selection is a process that can result in multiple subgroups within a population, which is referred to as diversification. Foraging‐related diversification has been described in many taxa, but many questions remain about the contribution of such diversification to reproductive isolation and potentially sympatric speciation. Here, we use stable isotope analysis of diet and morphological analysis of body shape to examine phenotypic divergence between littoral and pelagic foraging ecomorphs in a population of pumpkinseed sunfish (Lepomis gibbosus). We then examine reproductive isolation between ecomorphs by comparing the isotopic compositions of nesting males to eggs from their nests (a proxy for maternal diet) and use nine microsatellite loci to examine genetic divergence between ecomorphs. Our data support the presence of distinct foraging ecomorphs in this population and indicate that there is significant positive assortative mating based on diet. We did not find evidence of genetic divergence between ecomorphs, however, indicating that isolation is either relatively recent or is not strong enough to result in genetic divergence at the microsatellite loci. Based on our findings, pumpkinseed sunfish represent a system in which to further explore the mechanisms by which natural and sexual selection contribute to diversification, prior to the occurrence of sympatric speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号