首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The current discussion about the relationships of higher arthropod taxa has led to a conflict between the traditional Tracheata (=Atelocerata) concept (hexapods united with myriapods), the Tetraconata concept (hexapods united with crustaceans, excluding myriapods), and the Paradoxopoda or Myriochelata concept (myriapods united with cheliceratans), with major contradictions between morphological and molecular data. We have analyzed a character set which apparently has completely vanished from the recent debate, namely the equipment of the trunk pleura of myriapods and insects with a characteristic set of concentric sclerites around the leg base and accompanying muscles. Based on the work of Heymons (1899) these sclerites were thought to be remains of the first appendage article, then denominated “subcoxa”. We have re-visited this old idea and show the arrangement of the much discussed pleural structures by SEM for the first time. Obviously a characteristic pattern of concentric pleural plates around the leg-base is present in all major myriapod taxa, including for the first time evidence for their presence in Progoneata. Because of their equal structure and orientation, the pleural sclerites present in entognathous and ectognathous insects may be derived from the same ground pattern. We conclude that the pleurites of Hexapoda and Myriapoda seem to be homologous structures, and there is evidence that the “subcoxa” of Tracheata is homologous with the coxa of crustaceans. Since no other arthropods show these sclerites, the transformation of the crustacean coxa to the pleural region in myriapods and insects is probably a synapomorphy congruent with the traditional Tracheata-hypothesis. Further investigations of recently published molecular work using the phylogenetic network software SplitsTree V.4 indicate that information content of several data sets is not convincing.  相似文献   

2.
Legged locomotion requires that information local to one leg, and inter-segmental signals coming from the other legs are processed appropriately to establish a coordinated walking pattern. However, very little is known about the relative importance of local and inter-segmental signals when they converge upon the central pattern generators (CPGs) of different leg joints. We investigated this question on the CPG of the middle leg coxa?Ctrochanter (CTr)-joint of the stick insect which is responsible for lifting and lowering the leg. We used a semi-intact preparation with an intact front leg stepping on a treadmill, and simultaneously stimulated load sensors of the middle leg. We found that middle leg load signals induce bursts in the middle leg depressor motoneurons (MNs). The same local load signals could also elicit rhythmic activity in the CPG of the middle leg CTr-joint when the stimulation of middle leg load sensors coincided with front leg stepping. However, the influence of front leg stepping was generally weak such that front leg stepping alone was only rarely accompanied by switching between middle leg levator and depressor MN activity. We therefore conclude that the impact of the local sensory signals on the levator?Cdepressor motor system is stronger than the inter-segmental influence through front leg stepping.  相似文献   

3.
The morphology of the coxa and trochanter was studied in 205 species from 68 fly families to compare these structures with respect to ability to fly in a streamlined posture, with the middle legs pointing forward and pressed to the thorax. Only Brachycera are able to attain this posture. The forward turn of the coxa at this position is hindered by the junction of the coxa with the pleuron. Recovery of mobility is gained in two ways. (1) By reduction of the contact zone between coxa and pleurite, as in Asiloidea, Bombyloidea, and Empidoidea. Within these flies, the streamlined posture was recorded in Bombyliidae and in a robber-fly, Laphria flava . Others fly with their middle legs straddled laterally or trailing backwards. (2) Longitudinal splitting of the coxa into three coxites provides intracoxal mobility in most Tabanoidea and Cyclorrhapha. The hind and medial coxites rotate about the front coxite and change the coxo-trochanteral axis, thus compensating for restricted protraction. Separation of the hind coxite appears in primitive Tabanoidea, and a separate middle coxite was found in several families among the Nematocera. The streamlined posture was recorded in horse-flies, stratiomyids, and in many Cyclorrhapha except Micropezidae and Hippoboscidae. There is morphological evidence for a possible secondary fusion of coxites at least in Dolichopodidae and Opetidae as well as for the origin of Cyclorrhapha from a miniature ancestor.  相似文献   

4.
Summary The femoro-tibial joint of the middle leg of Gerris najas is a single-axis hinge with an effective angle of 180°. Morphology and kinematics of this joint are described. Short sclerites are inserted between the tibia and the tendon-like apodemes of its flexor and extensor muscles. Flexible at both ends, the sclerites extend the angle of leverage by 120° in the case of the extensor tibiae and by 60° in the case of the flexor tibiae. The effective lever length was determined quantitatively for the entire 180° (see Fig. 6).  相似文献   

5.
We studied the common kinematic features of the coxa and trochanter in cursorial and raptorial legs, which are the short size of the podomers, predominantly monoaxial joints, and the approximate orthogonality of adjacent joint axes. The chain coxa-trochanter with its short elements and serial orthogonality of joint axes resembles the gimbals which combine versatility and tolerance to external perturbations. The geometry of legs was studied in 23 insect species of 12 orders. Insects with monoaxial joints were selected. The joint between the trochanter and the femur (TFJ) is defined either by two vestigial condyles or by a straight anterior hinge. Direction of the joint axes in the two basal podomers was assessed by 3D measurements or by goniometry in two planes. Length of the coxa is <15% (mostly <8%) of the total length of the cursorial leg, that of the trochanter <10%. Angles between the proximal and distal joint axes in the middle coxa range from 124 to 84 degrees (mean 97+/-14 degrees ), in the trochanter (in all legs studied) from 125 to 72 degrees (mean 90+/-13 degrees ). Vectors of the distal axis in the coxa are concentrated about the normal to the plane defined by the proximal axis and the midpoint between the distal condyles. These vectors in the trochanter lie at various angles to the normal; angles are correlated with the direction of the TFJ relative to the femur. Range of reduction about the TFJ is over 60 degrees in the foreleg of Ranatra linearis, Mantispa lobata and the hind leg in Carabus coriaceus (confirming observations of previous authors), 40-60 degrees in the foreleg of Vespa crabro and in the middle one in Ammophila campestris, 10-30 degrees in other studied specimens. The special role of the trochanter in autotomy and in active propulsion in some insect groups is discussed. The majority of insects possess small trochanters and slightly movable TFJs with the joint axis laying in the femur-tibia plane. We pose the hypothesis that the TFJ damps external forces, the vectors of which lie off the femur-tibia plane, the reductor muscle acting as a spring. Thus the TFJ contributes to dynamic stability of legged locomotion.  相似文献   

6.
The escape behavior of the cockroach Periplaneta americana was studied by means of high speed filming (250 frames/s) and a computer-graphical analysis of the body and leg movements. The results are as follows: 1. The behavior begins with pure rotation of the body about the posteriorly located cerci, followed by rotation plus forward translation, and finally pure translation (Figs. 1, 2). 2. A consistent inter-leg coordination is used for the entire duration of the turn (Fig. 3A). At the start of the movement, five or all six legs execute their first stance phase (i.e. leg on the ground during locomotion) simultaneously. By the end of the turn the pattern has changed to the alternate 'tripod' coordination characteristic of insect walking. The change-over from all legs working together, to working alternately, occurs by means of a consistent pattern of delays in the stepping of certain legs. 3. The movements made by each leg during its initial stance phase are carried out using consistent movement components in the anterior-posterior (A-P) and the medial-lateral (M-L) axes (Fig. 4A). The movement at a particular joint in each middle leg is found to be diagnostic for the direction of turn. 4. The size and direction of a given leg's M-L movement in its initial stance phase depends on the same leg's prior A-P position (Fig. 5). No such feedback effects were seen among different legs. 5. Animals that are fixed to a slick surface on which they make slipping leg movements show the same inter-leg coordination (Fig. 3B), direction of initial stance movement (Fig. 4B) and dependence of the leg's initial M-L movement on its prior A-P position (Fig. 6), as did free-ranging animals. 6. Cockroaches that are walking at the moment they begin their escape reverse those ongoing leg movements that are contrary to escape movements. 7. These results are discussed in terms of the overall coordination of the complex movements, and in terms of the known properties of the neural circuitry for escape. Possibilities for neurobiological follow-up of certain of the findings presented here are also addressed.  相似文献   

7.
ABSTRACT. The motor output to the protractor and retractor mucles moving the coxa of the middle leg of Carausius morosus was recorded from the thoracic nerves during walking on a treadwheel. The leg movements on the wheel were generally similar to those found in free-walking animals, but tripod coordination was relatively independent of period, and the coordination of the adult animal on the wheel was most closely related to that found in free-walking first instars. The activity of a common inhibitor and four excitatory axons of the retractor and an excitatory axon of the protractor were followed for 850 steps (in six animals) to give a summary of the behaviour of the different units. The motor activity is less stereotyped than that previously reported for insects. There was strong reciprocity between the antagonists, but this was not directly correlated with the forward and backward movements of the legs. The first part of the stance phase of the leg was accompanied by a strong burst in the protractor nerve and relatively little retractor activity. This was followed by the main retractor burst which occupied the last 60% of the stance phase. The results are compared with motor output records of the locust and with earlier force-plate measurements on the stick insect. It must be concluded that the mesothoracic leg initially resists forward movement of the body by the other legs during a typical walking step.  相似文献   

8.
We investigated insects Carausius morosus walking whilst hanging upside down along a narrow 3 mm horizontal beam. At the end of the beam, the animal takes a 180° turn. This is a difficult situation because substrate area is small and moves relative to the body during the turn. We investigated how leg movements are organised during this turn. A non-contact of either front leg appears to indicate the end of the beam. However, a turn can only begin if the hind legs stand in an appropriate position relative to each other; the outer hind leg must not be placed posterior to the inner hind leg. When starting the turn, both front legs are lifted and usually held in a relatively stable position and then the inner middle leg performs a swing-and-search movement: The leg begins a swing, which is continued by a searching movement to the side and to the rear, and eventually grasps the beam. At the same time the body is turned usually being supported by the outer middle leg and both hind legs. Then front legs followed by the outer middle leg reach the beam. A scheme describing the turns based on a few simple behavioural elements is proposed.  相似文献   

9.
Each leg of a standing stick insect acts as a height controller. The leg contains several joints. Most of these joints are known to be controlled by feedback loops which are the basis of resistance reflexes (review Bässler 1983). This leads to the question of whether the resistance reflex of the whole leg can be understood as a simple, vectorial sum of the individual reflexes provided by the different joints, or whether additional properties emerge by simultaneous stimulation of several joints. Force measurements were performed while passively moving the middle leg tarsus of a fixed stick insect (Carausius morosus) stepwise to different positions. From the dynamic and static forces the torques developed by each joint were calculated. They were compared with the torques developed when only a single joint was moved by the same amount. The comparison shows that for a large range of positions there are no differences between both situations. Differences occur in two cases. First, the muscle system controlling the coxa-trochanter joint seems to be more strongly excited when the entire leg is moved than when only the one joint is moved. This change increases the linearity of the whole system for small deviations from the zero position. Second, the torque developed by the extensor tibiae system for negative steps (corresponding to increased body height), and the levator of coxa and trochanter for positive steps, decreases rather than increases when the whole leg is moved to extreme positions. This contributes to a decrease in the slope of the force-height characteristic and thus to a more non-linear behaviour of the whole system for the extreme positions. It is well known that the amplification factors of resistance reflexes in the leg show a large variation (Bässler 1972a; Kittmann 1991). Our results indicate that any change of the amplification factor influences the reflexes in all leg joints in the same way.  相似文献   

10.
In various orthopterous insects backfilling of leg nerve 3B regularly stained, in the thoracic ganglia, small cell bodies that resemble those of central sensory neurons reported in the locust (Br?unig and Hustert 1980). Centrifugal cobalt infusion of this nerve revealed the end organs of those neurons in the periphery. In all species investigated one strand receptor is associated with the trochantin, while two others are situated in the coxa. In addition to these sense organs, the coxa contains a multipolar stretch receptor which spans the coxotrochanteral joint. The absence of chordotonal organs is discussed with reference to earlier work in this field.  相似文献   

11.
A new technique for studying the external morphology of thoracic sclerites of mosquitoes (Diptera: Culicidae) was developed. According to this method, the shape of sclerites and the position of setae and scales can be examined using SEM or light microscopy even in cases when setae or scales have been lost. The method can be recommended for the damaged material which is often obtained during sampling. The bases of setae usually exceed 100 μm in diameter and thus differ significantly from the bases of scales which are about 30 μm in diameter. Analysis of the structure of sclerites and the arrangement of setae and scales on them in different specimens of one species may reveal intraspecific variation of this character complex. Comparison of species from different genera of the family Culicidae, as well as comparison of closely related species, will probably help to estimate the diagnostic value of thoracic sclerites as morphological characters.  相似文献   

12.
In the stick insect (Carausius morosus) imposed forward and backward movements of the coxa of the middle leg induce resistance reflexes in the retractor or protractor coxae muscles, depending on the direction of movement. The hairs of the ventral coxal hairplate (cxHPv) function as the primary transducer of the retractor part of the underlying feedback loop: bending of the hairs of the cxHPv during an imposed forward movement of the coxa leads to a reflex activation of the retractor motoneurones, whereas releasing of the hairs causes an inhibition of these motoneurones. Local nonspiking interneurones were investigated, which transmit information from the cxHPv onto the retractor motoneurones: 1) they are depolarized during bending of the hair sensilla of the cxHPv and 2) they decrease the activities of retractor motoneurones. In addition, four of the interneurones drive a protractor motoneurone, when they are depolarized. As bending stimuli at the cxHPv (mimicking an imposed forward movement of the leg) induce reflex activation of the retractor motoneurones and reflex inhibition of the protractor motoneurones, the physiology of the recorded interneurones appears to antagonize the resistance reflex in the thoraco-coxal joint. The results indicate that these nonspiking interneurones take part in the shaping of the reflex response and that furthermore these interneurones are involved in the organization of the motor output to the two antagonistic sets of motoneurones. The possible role of these interneurones might be the adjustment of the gain and of the time constant in the thoraco-coxal feedback loop.  相似文献   

13.
Construction of the middle and hind coxae was investigated in 95 species of 30 nematoceran families. As a rule, the middle coxa contains a separate coxite, the mediocoxite, articulated to the sternal process. In most families, this coxite is movably articulated to the eucoxite and to the distocoxite area; the coxa is radially split twice. Some groups are characterized by a single split. The coxa in flies is restricted in its rotation owing to a partial junction either between the meron and the pleurite or between the eucoxite and the meropleurite. Hence the coxa is fastened to the thorax not only by two pivots (to the pleural ridge and the sternal process), but at the junction named above. Rotation is impossible without deformations; the role of hinges between coxites is to absorb deformations. This adaptive principle is confirmed by physical modelling. Middle coxae of limoniid tribes Eriopterini and Molophilini are compact, constructed by the template of hind coxae. On the contrary, hind coxae in all families of Mycetophiloidea and in Psychodidae s.l. are constructed like middle ones, with the separate mediocoxite, centrally suspended at the sternal process. These cases are considered as homeotic mutations, substituting one structure with a no less efficient one.  相似文献   

14.
In Auchenorrhyncha, jumping is achieved by metathoracic muscles which are inserted into the trochanter of the hind leg. The synchronisation of movements of the hind legs is a difficult problem, as the leg extension that produces the jump occurs in less than 1 ms. Even slight asynchrony could potentially result in failure of a jump. Both the synchronisation of the movements of a pair of jumping legs, and their stabilisation during a jump, seem to be important problems for small jumping insects. The present study was performed in order to clarify some questions of the functional morphology of the leafhopper jumping mechanism. It is based on skeleton-muscle reconstruction, high-speed video recordings, transmission (TEM) and scanning electron microscopic (SEM) investigations of the cuticle, together with 3D inverse-kinematic modelling of angles and working zones of hind leg joints of cicada Cercopis vulnerata (Cercopidae). The complete extension of the hind leg takes less than 1 ms, which suggests that the jump is powered not only by the muscle system, but also by an elastic spring. Histological staining and fluorescence microscopy showed resilin-bearing structures, responsible for elastic energy storage, in the pleural area of the metathorax. Synchronisation of hind leg movements may be aided by microtrichia fields that are located on the medial surface of each hind coxa. In Auchenorrhyncha, hind coxae are rounded in their anterior and lateral parts, whereas medial parts are planar, and contact each other over a rather large area. The inverse-kinematic model of propulsive leg movements was used to draw the surface outlined by the medial surface of the coxa, during the jump movement. This is a cone surface, faced with its bulged-in side, medially. Surfaces outlined by the movements of both right and left coxae overlap in their anterior and posterior positions. In both extreme positions, coxae are presumably connected to each other by coupled microtrichia fields. Thus, in extreme positions, both coxae can be moved synchronously.  相似文献   

15.
We have combined high-speed video motion analysis of leg movements with electromyogram (EMG) recordings from leg muscles in cockroaches running on a treadmill. The mesothoracic (T2) and metathoracic (T3) legs have different kinematics. While in each leg the coxa-femur (CF) joint moves in unison with the femur-tibia (FT) joint, the relative joint excursions differ between T2 and T3 legs. In T3 legs, the two joints move through approximately the same excursion. In T2 legs, the FT joint moves through a narrower range of angles than the CF joint. In spite of these differences in motion, no differences between the T2 and T3 legs were seen in timing or qualitative patterns of depressor coxa and extensor tibia activity. The average firing frequencies of slow depressor coxa (Ds) and slow extensor tibia (SETi) motor neurons are directly proportional to the average angular velocity of their joints during stance. The average Ds and SETi firing frequency appears to be modulated on a cycle-by-cycle basis to control running speed and orientation. In contrast, while the frequency variations within Ds and SETi bursts were consistent across cycles, the variations within each burst did not parallel variations in the velocity of the relevant joints. Accepted: 24 May 1997  相似文献   

16.
1. Clusters of legs having prothoracic and metathoracic origins were grown from the metathoracic coxa of the cockroach. 2. Or occasionally two, of the three major nerves innervating the cockroach leg. 3. Stimulation of a particular leg nerve (no. 3, 5 or 6) evoked movement at the same joints and in the same directions in a leg having only one nerve as in a normal leg. 4. Stimulation of a particular metathoracic nerve generally produced the same movements in a prothoracic leg transplanted to the metathoracic site as it did in a regenerated or intact metathoracic leg.  相似文献   

17.
Summary In stick insects, the swing of each rear leg is aimed at the ipsilateral middle leg. The control of this targeted movement was investigated by applying external force to aid or oppose protraction of one rear leg as stick insects walked on a treadwheel.In the first condition studied, the target middle leg was stationary during the protraction of the rear leg (Figs. 1a, 2). The opposing forces tested were 14 and 32 times greater than the peak force exerted during unobstructed protraction. Nevertheless, the rear leg continued to step to a constant position behind the middle leg (Fig. 3).In the second condition, the target middle leg also walked on the wheel. As the force opposing protraction increased, the endpoint of rear leg protraction shifted caudally, the speed of protraction decreased, and the total protraction duration increased (Fig. 5; Table 1). The middle leg's position at the end of rear leg protraction shifted caudally but its posterior extreme position remained virtually unchanged. When the onset of the external force was abrupt, compensation often occurred within 20 ms (Fig. 6a).External forces aiding protraction increased protraction speed only slightly (Table 2). When the force was suddenly removed, the leg continued moving forward but with reduced velocity (Fig. 6b).It is concluded that position information is used only to determine the swing endpoint and that velocity is controlled during the movement. The results are compared with movements to a target by vertebrates and with models of motor control in general.Abbreviations AEP anterior extreme position - PEP posterior extreme position  相似文献   

18.
Calcified sclerites are common in many benthic marine invertebrates, and despite their widespread occurrence, little is known about their ecological roles. Previous studies suggested that the sclerite composition of coral colonies may be altered in response to environmental cues such as predation and water motion. Furthermore, larger sclerites are thought to be more effective than small ones in deterring predators, while small sclerites may provide greater stiffness and resistance to deformation. The present study compared the length of the sclerites of the sea pansy Renilla muelleri from three depths in Guanabara Bay in southeastern Brazil. Our results show that sclerites are larger in deep-water specimens than in those from shallow water. Field assays were conducted in which sclerites from sea pansies at three depths were incorporated into artificial foods and offered to a natural assemblage of fish. These assays demonstrate that sclerites from R. muelleri from all three depths significantly reduced consumption by generalist carnivorous fishes. We conclude that R. muelleri uses skeletal elements not only to give the body its form but also as a defense against biotic threats.  相似文献   

19.
The pirouette turn is often initiated in neutral and externally rotated hip positions by dancers. This provides an opportunity to investigate how dancers satisfy the same mechanical objectives at the whole-body level when using different leg kinematics. The purpose of this study was to compare lower extremity control strategies during the turn initiation phase of pirouettes performed with and without hip external rotation. Skilled dancers (n=5) performed pirouette turns with and without hip external rotation. Joint kinetics during turn initiation were determined for both legs using ground reaction forces (GRFs) and segment kinematics. Hip muscle activations were monitored using electromyography. Using probability-based statistical methods, variables were compared across turn conditions as a group and within-dancer. Despite differences in GRFs and impulse generation between turn conditions, at least 90% of each GRF was aligned with the respective leg plane. A majority of the net joint moments at the ankle, knee, and hip acted about an axis perpendicular to the leg plane. However, differences in shank alignment relative to the leg plane affected the distribution of the knee net joint moment when represented with respect to the shank versus the thigh. During the initiation of both turns, most participants used ankle plantar flexor moments, knee extensor moments, flexor and abductor moments at the push leg׳s hip, and extensor and abductor moments at the turn leg׳s hip. Representation of joint kinetics using multiple reference systems assisted in understanding control priorities.  相似文献   

20.
Summary Retrograde CoS-impregnation was used to trace and map the course of sensory nerves and the distribution and innervation of the various proprioceptor types in all leg segments of Cupiennius salei, a Ctenid spider.1. Sensory nerve branches. In both the tibia and femur, axons of all proprioceptor types ascend in just two lateral nerves which do not merge with the main leg nerve until they reach the next proximal joint region. In the short segments — coxa, trochanter, patella, and tarsus — axons of the internal joint receptors often run separately from those of the other sensilla. Axons of the large lyriform slit sense organ at the dorsal metatarsus and of the trichobothria join with only a few hair axons and form their own nerve branches (Figs. 1, 2, 3).2. Proprioceptors. Each of the seven leg joints is supplied with at least one set of the well-known internal joint receptors, slit sensilla (single slits and lyriform organs), and long cuticular hairs. In addition, we found previously unnoticed hair plates on both sides of the coxa, near the prosoma/coxa joint; they are deflected by the articular membrane during joint movements (Fig. 4).3. Sensory cells and innervation. CoS-impregnation shows that each slit of the slit sense organs — be it a single slit or several slits in a lyriform organ — is innervated by two bipolar sensory cells (Fig. 6). We also confirm previous reports of multiple innervation in the internal joint receptors and in the long joint hairs and cuticular spines.Most of the ascending nerve branches run just beneath the cuticle for at least a short distance (Fig. 5); hence they are convenient sites for electrophysiological recordings of sensory activity even in freely walking spiders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号