首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Oligomers of the protein α-synuclein (α-syn) are thought to be a major toxic species in Parkinson’s disease, particularly through their ability to permeabilize cell membranes. The green tea polyphenol epigallocatechin gallate (EGCG) has been found to reduce this ability. We have analyzed α-syn oligomer dynamics and interconversion by H/D exchange monitored by mass spectrometry (HDX-MS). Our results show that the two oligomers OI and OII co-exist in equilibrium; OI is a multimer of OII and its dissociation can be followed by HDX-MS by virtue of the correlated exchange of the N-terminal region. Urea destabilizes the α-syn oligomers, dissociating OI to OII and monomers. Oligomers exposed to EGCG undergo Met oxidation. Intriguingly, EGCG induces an oxidation-dependent effect on the structure of the N-terminal region. For the non-oxidized N-terminal region, EGCG increases the stability of the folded structure as measured by a higher level of protection against H/D exchange. In contrast, protection is clearly abrogated in the Met oxidized N-terminal region. Having a non-oxidized and disordered N-terminal region is known to be essential for efficient membrane binding. Therefore, our results suggest that the combined effect of a structural stabilization of the non-oxidized N-terminal region and the presence of a disordered oxidized N-terminal region renders the oligomers less cytotoxic by decreasing the ability of the N-terminal region to bind to cell membranes and facilitate their permeabilization.  相似文献   

2.
Membranes form the first line of defence of bacteria against potentially harmful molecules in the surrounding environment. Understanding the protective properties of these membranes represents an important step towards development of targeted anti-bacterial agents such as sanitizers. Use of propanol, isopropanol and chlorhexidine can significantly decrease the threat imposed by bacteria in the face of growing anti-bacterial resistance via mechanisms that include membrane disruption. Here we have employed molecular dynamics simulations and nuclear magnetic resonance to explore the impact of chlorhexidine and alcohol on the S. aureus cell membrane, as well as the E. coli inner and outer membranes. We identify how sanitizer components partition into these bacterial membranes, and show that chlorhexidine is instrumental in this process.  相似文献   

3.
Cholesterol is an essential component of mammalian cell membranes whose subcellular concentration and function are tightly regulated by de novo biosynthesis, transport, and storage. Although recent reports have suggested diverse functions of cellular cholesterol in different subcellular membranes, systematic investigation of its site-specific roles has been hampered by the lack of a methodology for spatiotemporal manipulation of cellular cholesterol levels. Here, we report the development of a new cholesterol depletion system that allows for spatiotemporal manipulation of intracellular cholesterol levels. This system utilizes a genetically encoded cholesterol oxidase whose intrinsic membrane binding activity is engineered in such a way that its membrane targeting can be controlled in a spatiotemporally specific manner via chemically induced dimerization. In combination with in situ quantitative imaging of cholesterol and signaling activity measurements, this system allows for unambiguous determination of site-specific functions of cholesterol in different membranes, including the plasma membrane and the lysosomal membrane.  相似文献   

4.
The localization of many membrane proteins within cholesterol- and sphingolipid-containing microdomains is essential for proper cell signaling and function. These membrane domains, however, are too small and dynamic to be recorded, even with modern super-resolution techniques. Therefore, the association of membrane proteins with these domains can only be detected with biochemical assays that destroy the integrity of cells require pooling of many cells and take a long time to perform. Here, we present a simple membrane fluidizer–induced clustering approach to identify the phase-preference of membrane-associated molecules in individual live cells within 10–15 min. Experiments in phase-separated bilayers and live cells on molecules with known phase preference show that heptanol hyperfluidizes the membrane and stabilizes phase separation. This results in a transition from nanosized to micronsized clusters of associated molecules allowing their identification using routine microscopy techniques. Membrane fluidizer-induced clustering is an inexpensive and easy to implement method that can be conducted at large-scale and allows easy identification of protein partitioning in live cell membranes.  相似文献   

5.
Almost all the cholesterol in cellular membranes is associated with phospholipids in simple stoichiometric complexes. This limits the binding of sterol ligands such as filipin and perfringolysin O (PFO) to a small fraction of the total. We offer a simple mathematical model that characterizes this complexity. It posits that the cholesterol accessible to ligands has two forms: active cholesterol, which is that not complexed with phospholipids; and extractable cholesterol, that which ligands can capture competitively from the phospholipid complexes. Simulations based on the model match published data for the association of PFO oligomers with liposomes, plasma membranes, and the isolated endoplasmic reticulum. The model shows how the binding of a probe greatly underestimates cholesterol abundance when its affinity for the sterol is so weak that it competes poorly with the membrane phospholipids. Two examples are the understaining of plasma membranes by filipin and the failure of domain D4 of PFO to label their cytoplasmic leaflets. Conversely, the exaggerated staining of endolysosomes suggests that their cholesterol, being uncomplexed, is readily available. The model is also applicable to the association of cholesterol with intrinsic membrane proteins. For example, it supports the hypothesis that the sharp threshold in the regulation of homeostatic endoplasmic reticulum proteins by cholesterol derives from the cooperativity of their binding to the sterol weakly held by the phospholipids. Thus, the model explicates the complexity inherent in the binding of ligands like PFO and filipin to the small accessible fraction of membrane cholesterol.  相似文献   

6.
Membrane proteins play essential roles in various cellular processes, such as nutrient transport, bioenergetic processes, cell adhesion, and signal transduction. Proteomics is one of the key approaches to exploring membrane proteins comprehensively. Bottom–up proteomics using LC–MS/MS has been widely used in membrane proteomics. However, the low abundance and hydrophobic features of membrane proteins, especially integral membrane proteins, make it difficult to handle the proteins and are the bottleneck for identification by LC–MS/MS. Herein, to improve the identification and quantification of membrane proteins, we have stepwisely evaluated methods of membrane enrichment for the sample preparation. The enrichment methods of membranes consisted of precipitation by ultracentrifugation and treatment by urea or alkaline solutions. The best enrichment method in the study, washing with urea after isolation of the membranes, resulted in the identification of almost twice as many membrane proteins compared with samples without the enrichment. Notably, the method significantly enhances the identified numbers of multispanning transmembrane proteins, such as solute carrier transporters, ABC transporters, and G-protein–coupled receptors, by almost sixfold. Using this method, we revealed the profiles of amino acid transport systems with the validation by functional assays and found more protein–protein interactions, including membrane protein complexes and clusters. Our protocol uses standard procedures in biochemistry, but the method was efficient for the in-depth analysis of membrane proteome in a wide range of samples.  相似文献   

7.
Cardiolipin (CL) has been shown to play a crucial role in regulating the function of proteins in the inner mitochondrial membrane. As the most abundant protein of the inner mitochondrial membrane, the ADP/ATP carrier (AAC) has long been the model of choice to study CL-protein interactions, and specifically bound CLs have been identified in a variety of crystal structures of AAC. However, how CL binding affects the structural dynamics of AAC in atomic detail remains largely elusive. Here we compared all-atom molecular dynamics simulations on bovine AAC1 in lipid bilayers with and without CLs. Our results show that on the current microsecond simulation time scale: 1) CL binding does not significantly affect overall stability of the carrier or structural symmetry at the matrix-gate level; 2) pocket volumes of the carrier and interactions involved in the matrix-gate network become more heterogeneous in parallel simulations with membranes containing CLs; 3) CL binding consistently strengthens backbone hydrogen bonds within helix H2 near the matrix side; and 4) CLs play a consistent stabilizing role on the domain 1-2 interface through binding with the R30:R71:R151 stacking structure and fixing the M2 loop in a defined conformation. CL is necessary for the formation of this stacking structure, and this structure in turn forms a very stable CL binding site. Such a delicate equilibrium suggests the strictly conserved R30:R71:R151stacking structure of AACs could function as a switch under regulation of CLs. Taken together, these results shed new light on the CL-mediated modulation of AAC function.  相似文献   

8.
In some cases, lipids in one leaflet of an asymmetric artificial lipid vesicle suppress the formation of ordered lipid domains (rafts) in the opposing leaflet. Whether this occurs in natural membranes is unknown. Here, we investigated this issue using plasma membrane vesicles (PMVs) from rat leukemia RBL-2H3 cells. Membrane domain formation and order was assessed by fluorescence resonance energy transfer and fluorescence anisotropy. We found that ordered domains in PMVs prepared from cells by N-ethyl maleimide (NEM) treatment formed up to ~37°C, whereas ordered domains in symmetric vesicles formed from the extracted PMV lipids were stable up to 55°C, indicating the stability of ordered domains was substantially decreased in intact PMVs. This behavior paralleled lesser ordered domain stability in artificial asymmetric lipid vesicles relative to the corresponding symmetric vesicles, suggesting intact PMVs exhibit some degree of lipid asymmetry. This was supported by phosphatidylserine mislocalization on PMV outer leaflets as judged by annexin binding, which indicated NEM-induced PMVs are much more asymmetric than PMVs formed by dithiothreitol/paraformaldehyde treatment. Destroying asymmetry by reconstitution of PMVs using detergent dilution also showed stabilization of domain formation, even though membrane proteins remained associated with reconstituted vesicles. Similar domain stabilization was observed in artificial asymmetric lipid vesicles after destroying asymmetry via detergent reconstitution. Proteinase K digestion of proteins had little effect on domain stability in NEM PMVs. We conclude that loss of PMV lipid asymmetry can induce ordered domain formation. The dynamic control of lipid asymmetry in cells may regulate domain formation in plasma membranes.  相似文献   

9.
10.
Structural and functional characterization of proteins as well as the design of targeted drugs heavily rely on recombinant protein expression and purification. The polyhistidine-tag (His-tag) is among the most prominent examples of affinity tags used for the isolation of recombinant proteins from their expression hosts. Short peptide tags are commonly considered not to interfere with the structure of the tagged protein and tag removal is frequently neglected. This study demonstrates the formation of higher-order oligomers based on the example of two His-tagged membrane proteins, the dimeric arginine-agmatine antiporter AdiC and the pentameric light-driven proton pump proteorhodopsin. Size exclusion chromatography revealed the formation of tetrameric AdiC and decameric as well as pentadecameric proteorhodopsin through specific interactions between their His-tags. In addition, single particle cryo-electron microscopy (cryo-EM) allowed structural insights into the three-dimensional arrangement of the higher-order oligomers and the underlying His-tag-mediated interactions. These results reinforce the importance of considering the length and removal of affinity purification tags and illustrate how neglect can lead to potential interference with downstream biophysical or biochemical characterization of the target protein.  相似文献   

11.
Serine palmitoyltransferase (SPT) predominantly incorporates serine and fatty acyl-CoAs into diverse sphingolipids (SLs) that serve as structural components of membranes and signaling molecules within or amongst cells. However, SPT also uses alanine as a substrate in the contexts of low serine availability, alanine accumulation, or disease-causing mutations in hereditary sensory neuropathy type I, resulting in the synthesis and accumulation of 1-deoxysphingolipids (deoxySLs). These species promote cytotoxicity in neurons and impact diverse cellular phenotypes, including suppression of anchorage-independent cancer cell growth. While altered serine and alanine levels can promote 1-deoxySL synthesis, they impact numerous other metabolic pathways important for cancer cells. Here, we combined isotope tracing, quantitative metabolomics, and functional studies to better understand the mechanistic drivers of 1-deoxySL toxicity in cancer cells. We determined that both alanine treatment and SPTLC1C133W expression induce 1-deoxy(dihydro)ceramide synthesis and accumulation but fail to broadly impact intermediary metabolism, abundances of other lipids, or growth of adherent cells. However, we found that spheroid culture and soft agar colony formation were compromised when endogenous 1-deoxySL synthesis was induced via SPTLC1C133W expression. Consistent with these impacts on anchorage-independent cell growth, we observed that 1-deoxySL synthesis reduced plasma membrane endocytosis. These results highlight a potential role for SPT promiscuity in linking altered amino acid metabolism to plasma membrane endocytosis.  相似文献   

12.
Pulmonary surfactant is a lipid-protein complex that coats the alveolar air-liquid interface, enabling the proper functioning of lung mechanics. The hydrophobic surfactant protein SP-B, in particular, plays an indispensable role in promoting the rapid adsorption of phospholipids into the interface. For this, formation of SP-B ring-shaped assemblies seems to be important, as oligomerization could be required for the ability of the protein to generate membrane contacts and to mediate lipid transfer among surfactant structures. SP-B, together with the other hydrophobic surfactant protein SP-C, also promotes permeability of surfactant membranes to polar molecules although the molecular mechanisms underlying this property, as well as its relevance for the surface activity of the protein, remain undefined. In this work, the contribution of SP-B and SP-C to surfactant membrane permeability has been further investigated, by evaluation of the ability of differently-sized fluorescent polar probes to permeate through giant vesicles with different lipid/protein composition. Our results are consistent with the generation by SP-B of pores with defined size in surfactant membranes. Furthermore, incubation of surfactant with an anti-SP-B antibody not only blocked membrane permeability but also affected lipid transfer into the air-water interface, as observed in a captive bubble surfactometer device. Our findings include the identification of SP-C and anionic phospholipids as modulators required for maintaining native-like permeability features in pulmonary surfactant membranes. Proper permeability through membrane assemblies could be crucial to complement the overall role of surfactant in maintaining alveolar equilibrium, beyond its biophysical function in stabilizing the respiratory air-liquid interface.  相似文献   

13.
Influenza is an acute respiratory disease and a global health problem. Although influenza vaccines are commercially available, frequent antigenic changes in hemagglutinin might render them less effective or unavailable. We previously reported that modified outer membrane vesicle (fmOMV) provided immediate and robust protective immunity against various subtypes of influenza virus. However, the effect was transient because it was innate immunity-dependent. In this study, we investigated the effects of consecutive administration of fmOMV and influenza virus on the adaptive immune response and long-term protective immunity against influenza virus. When the mice were pretreated with fmOMV and subsequently infected with influenza virus, strong influenza-specific antibody and T cell responses were induced in both systemic and lung mucosal compartments without pathogenic symptoms. Upon the secondary viral challenge at week 4, the mice given fmOMV and influenza virus exhibited almost complete protection against homologous and heterologous viral challenge. More importantly, this strong protective immunity lasted up to 18 weeks after the first infection. These results show that pretreatment with fmOMV and subsequent infection with influenza virus efficiently induces broad and long-lasting protective immunity against various virus subtypes, suggesting a novel antiviral strategy against newly-emerging viral diseases without suitable vaccines or therapeutics.  相似文献   

14.
Transition metal ions play key structural and functional roles, affecting structures of biomolecules and enzyme function. The importance of transition metal ions in chemical biology is, thus, undisputed. However, the aqueous chemistry of metal ions is complicated because they form species in several protonation and redox states. In the presence of metabolites, metal ions can also form coordination complexes. The existence of several species is relevant because enzymes and membrane receptors can distinguish between species even when they are rapidly equilibrating. Thus, metal ions, enzyme cofactors, and therapeutic agents are sensitive to the metal ion speciation chemistry because it affects their interaction with enzymes and other biomolecules. Speciation is also crucial for metal-containing bioorthogonal reactions, since water and metabolites stabilize active catalysts, affect chemoselectivity and reaction yields.  相似文献   

15.
Podocytes are crucial cells of the glomerular filtration unit and plays a vital role at the interface of the blood-urine barrier. Podocyte slit-diaphragm is a modified tight junction that facilitates size and charge-dependent permselectivity. Several proteins including podocin, nephrin, CD2AP, and TRPC6 form a macromolecular assembly and constitute the slit-diaphragm. Podocin is an integral membrane protein attached to the inner membrane of the podocyte via a short transmembrane region (101–125). The cytosolic N- and C-terminus help podocin to attain a hook-like structure. Podocin shares 44% homology with stomatin family proteins and similar to the stomatin proteins, podocin was shown to associate into higher-order oligomers at the site of slit-diaphragm. However, the stoichiometry of the homo-oligomers and how it partakes in the macromolecular assemblies with other slit-diaphragm proteins remains elusive. Here we investigated the oligomeric propensity of a truncated podocin construct (residues:126–350). We show that the podocin domain majorly homo-oligomerizes into a 16-mer. Circular dichroism and fluorescence spectroscopy suggest that the 16-mer oligomer has considerable secondary structure and moderate tertiary packing.  相似文献   

16.
Fluoroquinolones (FQ) are antibiotics widely used in clinical practise, but the development of bacterial resistance to these drugs is currently a critical public health problem. In this context, ternary copper complexes of FQ (CuFQPhen) have been studied as a potential alternative. In this study, we compared the passive diffusion across the lipid bilayer of one of the most used FQ, ciprofloxacin (Cpx), and its ternary copper complex, CuCpxPhen, that has shown previous promising results regarding antibacterial activity and membrane partition. A combination of spectroscopic studies and molecular dynamics simulations were used and two different model membranes tested: one composed of anionic phospholipids, and the other composed of zwitterionic phospholipids. The obtained results showed a significantly higher membrane permeabilization activity, larger partition, and a more favourable free energy landscape for the permeation of CuCpxPhen across the membrane, when compared to Cpx. Furthermore, the computational results indicated a more favourable translocation of CuCpxPhen across the anionic membrane, when compared to the zwitterionic one, suggesting a higher specificity towards the former. These findings are important to decipher the influx mechanism of CuFQPhen in bacterial cells, which is crucial for the ultimate use of CuFQPhen complexes as an alternative to FQ to tackle multidrug-resistant bacteria.  相似文献   

17.
Lipids are highly dynamic molecules that, due to their hydrophobicity, are spatially confined to membrane environments. From these locations, certain privileged lipids serve as signaling molecules. For understanding the biological functions of subcellular pools of signaling lipids, induced proximity tools have been invaluable. These methods involve controlled heterodimerization, by either small-molecule or light triggers, of functional proteins. In the arena of lipid signaling, induced proximity tools can recruit lipid-metabolizing enzymes to manipulate lipid signaling and create artificial tethers between organelle membranes to control lipid trafficking pathways at membrane contact sites. Here, we review recent advances in methodology development and biological application of chemical-induced and light-induced proximity tools for manipulating lipid metabolism, trafficking, and signaling.  相似文献   

18.
The outer membrane (OM) of Gram-negative bacteria acts as a formidable barrier against a plethora of detrimental compounds owing to its asymmetric nature. This is because the OM possesses lipopolysaccharides (LPSs) in the outer leaflet and phospholipids (PLs) in the inner leaflet. The maintenance of lipid asymmetry (Mla) system is involved in preserving the distribution of PLs in OM. The periplasmic component of the system MlaC serves as the substrate-binding protein (SBP) that shuttles PLs between the inner and outer membranes. However, an in-depth report highlighting its mechanism of ligand binding is still lacking. This study reports the crystal structure of MlaC from Escherichia coli (EcMlaC) at a resolution of 2.5 Å in a quasi-open state, complexed with PL. The structural analysis reveals that EcMlaC and orthologs comprise two major domains, viz. nuclear transport factor 2-like (NTF2-like) and phospholipid-binding protein (PBP). Each domain can be further divided into two subdomains arranged in a discontinuous fashion. This study further reveals that EcMlaC is polyspecific in nature and follows a reverse mechanism of the opening of the substrate-binding site during the ligand binding. Furthermore, MlaC can bind two PLs by forming subsites in the binding pocket. These findings, altogether, have led to the proposition of the unique “segmented domain movement” mechanism of PL binding, not reported for any known SBP to date. Further, unlike typical SBPs, MlaC has originated from a cystatin-like fold. Overall, this study establishes MlaC to be a non-canonical SBP with a unique ligand-binding mechanism.  相似文献   

19.
Membrane-traversing peptides offer opportunities for targeting intracellular proteins and oral delivery. Despite progress in understanding the mechanisms underlying membrane traversal in natural cell-permeable peptides, there are still several challenges to designing membrane-traversing peptides with diverse shapes and sizes. Conformational flexibility appears to be a key determinant of membrane permeability of large macrocycles. We review recent developments in the design and validation of chameleonic cyclic peptides, which can switch between alternative conformations to enable improved permeability through cell membranes, while still maintaining reasonable solubility and exposed polar functional groups for target protein binding. Finally, we discuss the principles, strategies, and practical considerations for rational design, discovery, and validation of permeable chameleonic peptides.  相似文献   

20.
《Fungal biology》2021,125(10):806-814
Filamentous fungi maintain hyphal growth to continually internalize membrane proteins related to cell wall synthesis, transporting them to the hyphal tips. Endocytosis mediates protein internalization via target recognition by the adaptor protein 2 complex (AP-2 complex). The AP-2 complex specifically promotes the internalization of proteins important for hyphal growth, and loss of AP-2 complex function results in abnormal hyphal growth. In this study, deletion mutants of the genes encoding the subunits of the AP-2 complex (α, β2, μ2, or σ2) in the filamentous fungus Aspergillus nidulans resulted in the formation of conidiophores with abnormal morphology, fewer conidia, and activated the cell wall integrity pathway. We also investigated the localization of ChsB, which plays pivotal roles in hyphal growth in A. nidulans, in the Δμ2 strain. Quantitative analysis suggested that the AP-2 complex is involved in ChsB internalization at subapical collar regions. The absence of the AP-2 complex reduced ChsB localization at the hyphal tips. Our findings suggest that the AP-2 complex contributes to cell wall integrity by properly localizing ChsB to the hyphal tips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号