首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hu CT  Chang HR  Hsu YH  Liu CJ  Chen HI 《Life sciences》2005,78(2):164-173
In the present study, we elucidated the possible role of hemodynamic parameters and chemical factors in the development of ventricular hypertrophy (VH) following chronic nitric oxide (NO) deprivation with Nomega-nitro-L-arginine methyl ester (L-NAME). Impedance spectral analysis was used to obtain the arterial hemodynamics including the steady and pulsatile components. Body weight (BW), left ventricular (LV) weight (LVW), LVW/BW ratio, LV collagen volume fraction (LVCVF), cyclic GMP, and nitrite/nitrate were measured. The extent of VH was evaluated by the LW/BW, total number, numerical density, and size of cardiomyocytes. Sprague-Dawley rats were given L-NAME 10, 20, and 40 mg/kg/day from the age of 10 to 18 weeks. Control and age-matched rats were given vehicle for the same period. Treatment of L-NAME for 8 weeks caused a dose-dependent increase in tail cuff pressure and a reduction in BW with increases in LVW, LVW/BW, number, numerical density, and size of myocytes. There was elevation of aortic pressure with decreases in cardiac output, and arterial compliance. The total peripheral resistance, characteristic impedance and pulse wave reflection were increased. Histological finding revealed severe myocardial hypertrophy and fibrosis with fibroblast infiltration. The LVCVF was increased, while LV cGMP and nitrite/nitrate were reduced in a dose-dependent manner. The results suggest that chronic NOS blockade causes hypertension, impairment of large vessel properties, and VH. The development of VH may result partly from the decreases in cGMP and nitrite/nitrate in the ventricle. Correlation analysis indicates that the extent of VH is equally related to the steady and pulsatile hemodynamics.  相似文献   

2.
内源性一氧化氮在高血压心肌肥厚中的作用   总被引:9,自引:0,他引:9  
目的和方法:本实验用L精氨酸和一氧化氮合酶(NOS)抑制剂LNAME观察内源性一氧化氮(NO)在高血压性心肌肥厚中的作用。结果:腹主动脉缩窄引起大鼠动脉血压显著升高,左心室重量/体重比值显著增加,左心室NO含量显著下降;L精氨酸不影响主动脉缩窄大鼠动脉血压,但减轻左心室重量/体重比值,明显升高左心室NO含量,加入LNAME可消除L精氨酸的上述作用;主动脉缩窄大鼠给予LNAME,动脉血压和左心室/体重比值并没有进一步增加;假手术大鼠给予LNAME,血压明显升高,左心室重量/体重比值轻度增加;主动脉缩窄大鼠不论是服用L精氨酸还是LNAME,左心室cGMP含量都明显增加。结论:口服L精氨酸可减轻主动脉缩窄大鼠心肌肥厚但不影响动脉血压,此作用可能是通过L精氨酸NO途径实现的,与cGMP机制无关。  相似文献   

3.
In our studies with spontaneously hypertensive (SHR), Wistar-Kyoto (WKY), and Wistar rats, we observed normotensive WKY rats with cardiac hypertrophy determined by a greater left ventricular (LV) mass (LVM)-to-body weight (BW) ratio (LVM/BW) than that of normotensive Wistar rats. Thus we compared the following parameters in SHR, WKY, and Wistar rats: LVM/BW, cell capacitance as index of total surface area of the myocytes, length, width, and cross-sectional area of cardiac myocytes, LV collagen volume fraction, and myocardial stiffness. The LVM/BW of WKY (2.41 +/- 0.03 mg/g, n = 41) was intermediate between SHR (2.82 +/- 0.04 mg/g, n = 47) and Wistar rats (1.98 +/- 0.04 mg/g, n = 28). A positive correlation between blood pressure and LVM was found in SHR, whereas no such relationship was observed in WKY or Wistar rats. Cell capacitance and cross-sectional area were not significantly different in SHR and WKY rats; these values were significantly higher than those of Wistar rats. The cell length was smaller but the width was similar in WKY compared with SHR. Papillary muscles isolated from the LV of WKY and SHR were stiffer than those from Wistar rats. Consistently, a greater level of myocardial fibrosis was detected in WKY and SHR compared with Wistar rats. These findings demonstrate blood pressure-independent cardiac hypertrophy in normotensive WKY rats.  相似文献   

4.
Long-term follow-up of left ventricular (LV) function using echocardiography has not been reported and, in this study, was carried out in normotensive (WKY) rats and spontaneously hypertensive rats (SHR). In 10 WKY rats and SHR, LV diastolic and systolic diameter (LVEDD and LVSD), shortening fraction (SF), and weight (LVW) were determined at 8, 15, 20, 35, and 80 wk of age. The ratio of early to late mitral flow and mitral annulus velocity (VE/VA and Em/Am), isovolumic relaxation time (IVRT), deceleration time of the E wave (DTE), Tei index, and mitral flow propagation velocity (Vp) were measured. No difference in LVEDD was found between SHR and WKY rats; however, LVEDD was increased at 80 wk in both strains. SF decreased slightly in old WKY rats. LVW progressively increased from 20 to 80 wk in both strains and was greater in SHR. VE/VA and Em/Am decreased at 80 wk in WKY rats. LV relaxation (IVRT, Tei index, and Vp) was progressively impaired in SHR compared with WKY rats. LV compliance (DTE) was altered in old SHR. Echocardiography permitted a long follow-up of LV function in SHR and WKY rats. Ventricular relaxation was impaired early in the life of SHR and progressed with aging. Furthermore, LV compliance was altered, but systolic function remained unchanged, in old SHR. In contrast, relaxation and SF were only slightly altered in old WKY rats, suggesting that pressure-related changes in LV function were the dominant features in the SHR.  相似文献   

5.
Hypertension that results in left ventricular (LV) hypertrophy and/or fibrosis can lead to cardiac dysfunction. Spontaneously hypertensive rats (SHR) develop high blood pressure and LV hypertrophy at an early age and are a popular model of human essential hypertension. To investigate the role of the tissue kallikrein-kinin system in cardiac remodeling, an adenovirus containing the human tissue kallikrein gene was injected intravenously into adult SHR and normotensive Wistar-Kyoto (WKY) rats. The blood pressure of WKY rats remained unchanged throughout the experiment. Alternatively, kallikrein gene transfer reduced blood pressure in SHR for the first 2 wk, but had no effect from 3 to 5 wk. Five weeks after kallikrein gene delivery, SHR showed significant reductions in LV-to-heart weight ratio, LV long axis, and cardiomyocyte size; however, these parameters were unaffected in WKY rats. Interestingly, cardiac collagen density was decreased in both SHR and WKY rats receiving the kallikrein gene. Kallikrein gene transfer also increased cardiac capillary density in SHR, but not in WKY rats. The morphological changes after kallikrein gene transfer were associated with decreases in JNK activation as well as transforming growth factor (TGF)-beta 1 and plasminogen activator inhibitor-1 levels in the heart. In addition, kallikrein gene delivery elevated LV nitric oxide and cGMP levels in both rat strains. These results indicate that kallikrein-kinin attenuates cardiac hypertrophy and fibrosis and enhances capillary growth in SHR through the suppression of JNK, TGF-beta 1, and plasminogen activator inhibitor-1 via the nitric oxide-cGMP pathway.  相似文献   

6.
Hypertension and exercise independently induce left ventricular (LV) remodeling and alter LV function. The purpose of this study was to determine systolic and diastolic LV pressure-volume relationships (LV-PV) in spontaneously hypertensive rats (SHR) with and without LV hypertrophy, and to determine whether 6 mo of exercise training modified the LV-PV in SHR. Four-month-old female SHR (n = 20), were assigned to a sedentary (SHR-SED) or treadmill-trained (SHR-TRD) group (approximately 60% peak O2 consumption, 5 days/wk, 6 mo), while age-matched female Wistar-Kyoto rats (WKY; n = 13) served as normotensive controls. The LV-PV was determined using a Langendorff isolated heart preparation at 4 (no hypertrophy: WKY, n = 5; SHR, n = 5) and 10 mo of age (hypertrophy: WKY, n = 8; SHR-SED, n = 8; SHR-TRD, n = 7). At 4 mo, the LV-PV in SHR was similar to that observed in WKY controls. However, at 10 mo of age, a rightward shift in the LV-PV occurred in SHR. Exercise training did not alter the extent of the shift in the LV-PV relative to SHR-SED. Relative systolic function, i.e., relative systolic elastance, was approximately 50% lower in SHR than WKY at 10 mo of age (P < 0.05). Doppler-derived LV filling parameters [early wave (E), atrial wave (A), and the E/A ratio] were similar between groups. LV capacitance was increased in SHR at 10 mo (P < 0.05), whereas LV diastolic chamber stiffness was similar between groups at 10 mo. Hypertrophic remodeling at 10 mo of age in female SHR is manifest with relative systolic decompensation and normal LV diastolic function. Exercise training did not alter the LV-PV in SHR.  相似文献   

7.
自发性高血压大鼠心脏与红细胞L-Arg转运的改变   总被引:1,自引:0,他引:1  
Zheng HZ  Wang XH  Liu XY  Tang CS  Liu NK 《生理学报》2000,52(4):323-328
研究自发性高血压大鼠 (spontaneouslyhypertensiverats ,SHR)心脏L 精氨酸 /一氧化氮 (L Arg/NO)系统的改变及其与红细胞L Arg转运的关系。检测 12周龄 (W)、16W、captopril治疗 4周后的 16WSHR (SHR C)及同龄Wistar Kyoto (WKY)大鼠心脏的L Arg转运、tNOS活性、NO 2 NO 3 和cGMP含量以及红细胞L Arg转运的改变。结果显示 ,SHR心室肌组织L Arg高亲和转运成分的最大转运速率 (Vmax)及低亲和转运成分的米氏常数 (Km)均明显低于WKY大鼠 ;但高亲和转运成分的Km 值和低亲和转运成分的Vmax则无明显改变 ;SHR C组的改变基本同 12W组。心肌组织tNOS活性的变化无统计学意义。NO 2 NO 3 及cGMP含量则分别较WKY组降低 2 4 6 %、19 8% (P >0 0 5 ,P <0 0 5 ,12W组 ) ,5 2 5 %、6 0 4% (P <0 0 1,P <0 0 1,16W组 )和 14 8%、2 3 % (P >0 0 5 ,P <0 0 5 ,SHR C组 )。tNOS活性、cGMP含量与LVW/BW呈负相关 ,r=0 45 0 7,P =0 0 5 (NOS) ,r=0 6 898,P <0 0 1(cGMP)。红细胞L Arg转运的改变与心脏一致 ,且其Vmax与心肌组织高亲和转运成分的Vmax呈正相关 ,r=0 5 6 0 6 ,P =0 0 1;与LVW /BW呈负相关 ,r=- 0 6 2 31,P <0 0 1。以上结果表明 ,SHR心室肌组织L Arg/NO系统活动被抑制 ,其抑制程度与心肌肥厚  相似文献   

8.
The hypothesis that endothelin (ET) receptor mechanisms are altered during development and progression of left ventricular hypertrophy (LVH) in vivo was tested using spontaneously hypertensive rats (SHRs). Ventricular cardiomyocytes were isolated from SHRs before onset (8 and 12 wk) and during progression (16, 20, and 24 wk) of LVH and compared with age-matched normotensive Wistar-Kyoto (WKY) rats. PreproET-1 mRNA expression was elevated in SHR (P < 0.05) relative to WKY cardiomyocytes at 20-24 wk. ET binding-site density was twofold greater in SHR than WKY cells at 12 wk (P < 0.05) but normalized at 20 wk. ET(B) receptors were detected on SHR cardiomyocytes as early as 8 wk and their affinity increased progressively with age (P < 0.05), whereas ET(B) receptors were not detected on WKY cells until 20 wk. ET-1 stimulated protein synthesis with similar maximum responses between strains (21-30%), in contrast with sarafotoxin 6c, which stimulated protein synthesis in SHR (13-20%) but not WKY cells at 12-20 wk. In SHR but not WKY cells, the ET(B) receptor-selective ligand A-192621 increased protein synthesis progressively with the development of LVH (15% maximum effect). In conclusion, the presence of ET(B) receptors (8-12 wk) coupled with functional responsiveness of SHR cells but not WKY cells to sarafotoxin 6c at 12 wk supports the involvement of ET(B) receptors before the onset of cardiomyocyte hypertrophy, whereas altered ET(B) receptor characteristics during active hypertrophy (16-24 wk) indicate that ET(B) receptor mechanisms may also contribute to disease progression.  相似文献   

9.
The Na(+)/K(+)-ATPase inhibitor ouabain has been shown to trigger hypertrophic growth of cultured cardiomyocytes; however, the significance of endogenous ouabain-like compound (OLC) in the hypertrophic process in vivo is unknown. Here we characterized the involvement of OLC in left ventricular (LV) hypertrophy induced by norepinephrine (NE) and angiotensin II (Ang II) infusions in rats. Administration of NE (300 microg/kg/h) via subcutanously implanted osmotic minipumps for 72 h resulted in a significant increase in left ventricular weight to body weight (LVW/BW) ratio (P<0.001) and a substantial up-regulation of atrial natriuretic peptide (ANP) gene expression (13.2-fold, P<0.001). NE infusion induced a transient increase in plasma OLC levels at 12 h (P<0.05), which returned to control levels by 72 h. Adrenalectomy markedly reduced both basal and NE-induced increase in plasma OLC levels. LVW/BW ratio was not modulated by adrenalectomy; however, ANP gene expression was blunted by 44% (P<0.01) and 47% (P<0.05) at 12 and 72 h, respectively. In agreement, adrenalectomy reduced up-regulation of ANP without affecting LV mass in rats infused with Ang II (33 microg/kg/h). Administration of exogenous ouabain (1 nM to 100 microM) for 24 h had no effect on ANP gene expression in cultured neonatal rat ventricular myocytes. However, the up-regulation of ANP mRNA levels induced by the alpha-adrenergic agonist phenylephrine (1 microM) was markedly enhanced by ouabain (100 microM) (5.6-fold vs. 9.6-fold, P<0.01). These data show that OLC as an adrenal-derived factor may be required for the induction LV ANP gene expression during the hypertrophic process.  相似文献   

10.
The general purpose of this study was to test the effect of exercise training on the left ventricular (LV) pressure-volume relationship (LV/PV) and apoptotic signaling markers in normotensive and hypertensive hearts. Four-month-old female normotensive Wistar-Kyoto rats (WKY; n = 37) and spontaneously hypertensive rats (SHR; n = 38) were assigned to a sedentary (WKY-SED, n = 21; SHR-SED, n = 19) or treadmill-trained (WKY-TRD, n = 16; SHR-TRD, n = 19) group (~60% Vo(2 peak), 60 min/day, 5 days/wk, 12 wk). Ex vivo LV/PV were established in isovolumic Langendorff-perfused hearts, and LV levels of Akt, phosphorylated Akt (Akt(Pi)), Bad, phosphorylated Bad (Bad(Pi)) c-IAP, x-IAP, calcineurin, and caspases 3, 8, and 9 were measured. Heart-to-body weight ratio was increased in SHR vs. WKY (P < 0.05), concomitant with increased calcineurin mRNA (P < 0.05). There was a rightward shift in the LV/PV (P < 0.05) and a reduction in systolic elastance (E(s)) in SHR vs. WKY. Exercise training corrected E(s) in SHR (P < 0.05) but had no effect on the LV/PV in WKY. Caspase 3 was increased in SHR-SED relative to WKY-SED, while Bad(Pi,) c-IAP, and x-IAP were significantly lower in SHR relative to WKY (P < 0.05). Exercise training increased Bad(Pi) in both WKY and SHR but did not alter caspase 9 activity in either group. While caspase 3 activity was increased with training in WKY (P < 0.05), it was unchanged with training in SHR. We conclude that moderate levels of regular aerobic exercise attenuate systolic dysfunction early in the compensatory phase of hypertrophy, and that a differential phenotypical response to moderate-intensity exercise exists between WKY and SHR.  相似文献   

11.
Arterial pressure in most experimental and clinical hypertensions is exacerbated by salt. The effects of salt excess on right and left ventricular (RV and LV, respectively) functions and their respective coronary vasodilatory responses have been less explored. We therefore examined the effects of 8 wk of NaCl excess (8% in food) on arterial pressure, RV and LV functions (maximal rate of increase and decrease of ventricular pressure; dP/dt(max) and dP/dt(min)), coronary hemodynamics (microspheres), and collagen content (hydroxyproline assay and collagen volume fraction) in young adult normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR), aged 16 wk by the end of the study. Prolonged salt excess in WKY and SHR elevated pressure only modestly, but it markedly increased LV mass, especially in SHR. Moreover, salt excess significantly impaired RV and LV diastolic function in SHR but only LV diastolic function in WKY rats. However, salt loading affected neither RV nor LV contractile function in both strains. Interstitial and perivascular collagen deposition was increased, whereas coronary vasodilatory responses to dipyridamole diminished in both ventricles in the salt-loaded SHR but not in WKY rats. Therefore, accumulation of ventricular collagen as well as altered myocardial perfusion importantly contributed to the development of salt-related RV and LV dysfunctions in this model of naturally occurring hypertension. The unique effects of salt loading on both ventricles in SHR, but not WKY rats, strongly suggest that nonhemodynamic mechanisms in hypertensive disease participate pathophysiologically with salt-loading hypertension. These findings point to the conclusion that the concept of "salt sensitivity" in hypertension is far more complex than simply its effects on arterial pressure or the LV.  相似文献   

12.
Myofibrillogenesis regulator-1 (MR-1) is a novel homologous gene, identified from a human skeletal muscle cDNA library, that interacts with contractile proteins and exists in human myocardial myofibrils. The present study investigated MR-1 protein expression in hypertrophied myocardium and MR-1 involvement in cardiac hypertrophy. Cardiac hypertrophy was induced by abdominal aortic stenosis (AAS) in Sprague-Dawley rats. Left ventricular (LV) hypertrophy was assessed by the ratio of LV wet weight to whole heart weight (LV/HW) or LV weight to body weight (LV/BW). Rat MR-1 (rMR-1) expression in the myocardium was detected by immunohistochemical and Western blotting analysis. Hypertrophy was induced by ANG II incubation in cultured neonatal rat cardiomyocytes. The effect of rMR-1 RNA interference on ANG II-induced hypertrophy was studied by transfection of cardiomyocytes with an RNA interference plasmid, pSi-1, which targets rMR-1. Hypertrophy in cardiomyocytes was assessed by [3H]Leu incorporation and myocyte size. rMR-1 protein expression in cardiomyocytes was detected by Western blotting. We found that AAS resulted in a significant increase in LV/HW and LV/BW: 89% and 86%, respectively (P < 0.01). Immunohistochemistry and Western blot analysis demonstrated upregulated rMR-1 protein expression in hypertrophic myocardium. ANG II induced a 24% increase in [3H]Leu incorporation and a 65.8% increase in cell size compared with control cardiomyocytes (P < 0.01), which was prevented by treatment with losartan, an angiotensin (AT1) receptor inhibitor, or transfection with pSi-1. rMR-1 expression increased in ANG II-induced hypertrophied cardiomyocytes, and pSi-1 transfection abolished the upregulation. These findings suggest that MR-1 is associated with cardiac hypertrophy in rats in vivo and in vitro.  相似文献   

13.
The present study aimed to investigate whether l-carnitine (LC) protects the vascular endothelium and tissues against oxidative damage in hypertension. Antioxidant enzyme activities, glutathione and lipid peroxidation were measured in the liver and heart of spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. Nitrite and nitrate levels and total antioxidant status (TAS) were evaluated in plasma, and the expression of endothelial nitric oxide synthase (eNOS) and p22phox subunit of NAD(P)H oxidase was determined in aorta. Glutathione peroxidase activity was lower in SHR than in WKY rats, and LC increased this activity in SHR up to values close to those observed in normotensive animals. Glutathione reductase and catalase activities, which were higher in SHR, tended to increase after LC treatment. No differences were found in the activity of superoxide dismutase among any animal group. The ratio between reduced and oxidized glutathione and the levels of lipid peroxidation were respectively decreased and increased in hypertensive rats, and both parameters were normalized after the treatment. Similarly, LC was able to reverse the reduced plasma nitrite and nitrate levels and TAS observed in SHR. We found no alterations in the expression of aortic eNOS among any group; however, p22phox mRNA levels showed an increase in SHR that was reversed by LC. In conclusion, chronic administration of LC leads to an increase in hepatic and cardiac antioxidant defense and a reduction in the systemic oxidative process in SHR. Therefore, LC might increase NO availability in SHR aorta by a reduction in superoxide anion production.  相似文献   

14.
We investigated the effects of salt loading on blood pressure, cardiac hypertrophy and fibrosis as well as on the effectiveness of various antihypertensive therapies in young spontaneously hypertensive rats (SHR). Twenty-five male SHR were salt-stimulated by drinking 1% NaCl from 3 to 6 months of age. Eighteen of them were treated for the last 2 weeks of salt loading with either the angiotensin-converting enzyme inhibitor captopril, the beta-adrenergic receptor blocker propranolol or the calcium-channel antagonist verapamil. Age-matched male Wistar-Kyoto (WKY) rats and SHR drinking only water served as controls. At the age of 6 months, SHR had significantly elevated blood pressure that was unchanged by salt loading. Relative heart weight was increased in SHR without (3.3) and even more so with salt intake (3.6 vs. 2.4 in WKY). Left ventricular (LV) hypertrophy was accompanied by a 17-fold increase in the expression of mRNA for atrial natriuretic factor (ANF) both in untreated and salt-loaded SHR compared to WKY (p<0.001). Collagen I and III mRNA increased 1.7-1.8-fold in SHR without and with additional salt intake (p<0.01). None of the therapies significantly reduced blood pressure or hypertrophy. Although captopril had no antihypertensive effect, it reduced ANF, collagen I and III mRNA in LV to control level. Less pronounced effects were achieved with verapamil. These findings emphasize the cardioprotective role of captopril which may not be fully expressed in the presence of elevated salt intake.  相似文献   

15.
Impairment of L-arginine metabolism in spontaneously hypertensive rats.   总被引:4,自引:0,他引:4  
Plasma L-arginine concentrations were determined in spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY) before and after water immersion stress. There was no difference in the plasma levels of L-arginine before stress loading between SHR and WKY rats. A significant decrease in the L-arginine level was found in the adult SHR rats after the stress stimuli. However, there was no change in plasma levels of L-arginine in the adult WKY rats before and after water immersion stress. In the weanling rats, significant increases were observed in the plasma L-arginine levels after stress loading in both strains. These findings indicate that there may be an impairment of the L-arginine metabolism in the SHR rats with age and that it may involve in the genesis of hypertension in the SHR rat through the L-arginine-EDRF system.  相似文献   

16.
In hypertensive animals and patients, oxidative stress represents the primary risk factor for progression of left ventricular hypertrophy. Recently, it has been demonstrated that hydrogen, as a novel antioxidant, can selectively reduce hydroxyl radicals and peroxynitrite anion to exert therapeutic antioxidant activity. In the current study, we explored the effect of chronic treatment with hydrogen-rich saline (HRS) on left ventricular hypertrophy in spontaneously hypertensive rats (SHR). The 8-week-old male SHR and age-matched Wistar-Kyoto rats (WKY) were randomized into HRS-treated (6 ml/kg/day for 3 months, i.p.) and vehicle-treated groups. HRS treatment had no significant effect on blood pressure, but it effectively attenuated left ventricular hypertrophy in SHR. HRS treatment abated oxidative stress, restored the activity of antioxidant enzymes including GPx, GST, catalase, and SOD, suppressed NADPH oxidase activity and downregulated Nox2 and Nox4 expression in left ventricles of SHR. HRS treatment suppressed pro-inflammatory cytokines including IL-1β, IL-6, TNF-α, and MCP-1, and inhibited NF-κB activation through preventing IκBα degradation in left ventricles of SHR. HRS treatment preserved mitochondrial function through restoring electron transport chain enzyme activity, repressing ROS formation, and enhancing ATP production in left ventricles of SHR. Moreover, HRS treatment suppressed ACE expression and locally reduced angiotensin II generation in left ventricles of SHR. In conclusion, HRS treatment attenuates left ventricular hypertrophy through abating oxidative stress, suppressing inflammatory process, preserving mitochondrial function, in which suppression of HRS on angiotensin II in left ventricles locally might be involved.  相似文献   

17.
Wang YY  Yu ZB 《生理学报》2008,60(2):197-204
在慢性压力超负荷引起心肌肥大过程中,蛋白激酶C(protein kinase C,PKC)的激活起关键性作用,激活的PKC也能调节心肌收缩性能.本文旨在研究自发性高血压大(spontaneously hypertensive rat,SHR)心肌肥大的不同阶段PKC调节心肌收缩性能的特征.采用胶原酶法分离4月龄与10月龄Wistar-Kyoto(WKY)、SHR大鼠的心肌细胞,观测单个心肌细胞无负荷缩短幅值以及在PKC激动剂与抑制剂作用下心肌收缩性能的变化.结果表明:刺激频率从1 Hz增至3 Hz,WKY大鼠心肌细胞无负荷缩短幅值逐渐增加,呈正阶梯效应;4月龄SHR大鼠心肌细胞的缩短幅值较WKY大鼠增强,但在各刺激频率下其缩短幅值基本保持不变;10月龄SHR大鼠心肌细胞的缩短幅值在1 Hz刺激条件下与WKY大鼠无差别,随刺激频率增加,缩短幅值降低,呈负阶梯效应.在PKC激动剂PMA灌流条件下,50、100与200 nmol/L的PMA分别降低WKY大鼠心肌细胞缩短幅值至(69.8±1.9)%、(58.2 2.2)%与(22.7±2.5)%(均P<0.01),呈浓度依赖关系;PMA对4月龄SHR大鼠心肌细胞缩短幅值的降低更明显,分别降至(6.1±0.7)%、(2.4±0.2)%与(12.5±2.6)%(均P<0.01);PMA降低10月龄SHR大鼠心肌细胞缩短幅值至(65.7±1.6)%、(53.9±4.0)%与(16.3±2.0)%(均P<0.01),小于对4月龄SHR大鼠心肌细胞缩短幅值的作用.PKC抑制剂staurosporine增加WKY大鼠心肌细胞缩短幅值,在200 nmol/L的staurosporine灌流条件下,WKY大鼠、4月龄SHR大鼠、10月龄SHR大鼠心肌细胞缩短幅值分别增JJH(63.63±4.53)%、(80.82±4.61)%、(80.97±4.59)%(均P<0.05).结果提示,在SHR大鼠心肌肥大初期,具有负性肌力作用的PKC异构体可能被激活,并参与对心肌收缩性能的调节;而心肌肥大稳定阶段,这些PKC活性可能恢复至正常水平.  相似文献   

18.
When increased in vascular tissues, angiotensin-converting enzyme 2 (ACE2), a carboxypeptidase that hydrolyzes angiotensin II to angiotensin-(1-7), may augment the growth inhibitory and vasodilatory effects of the heptapeptide. We investigated the regulation of ACE2 and angiotensin-(1-7) expression in aortas and carotid arteries of 12-wk-old male spontaneously hypertensive rats (SHR) by determining the effect of sustained angiotensin type 1 (AT(1)) receptor blockade with olmesartan (10 mg.kg(-1).day(-1), n = 13) compared with those that received atenolol (30 mg.kg(-1).day(-1), n = 13), hydralazine (10 mg.kg(-1).day(-1), n = 13), or vehicle (n = 21). Systolic blood pressures were approximately 30% lower (P < 0.05) in rats treated for 2 wk with olmesartan compared with vehicle-treated rats. Both atenolol and hydralazine produced similar decreases in systolic blood pressure. ACE2 mRNA in the thoracic aorta of olmesartan-treated rats (n = 8) was fivefold greater (P < 0.05) than that in vehicle-treated rats (n = 16), whereas atenolol (n = 8) or hydralazine (n = 8) had no effect. Immunostaining intensities in rats treated with olmesartan (n = 5) were also associated with increased (P < 0.05) ACE2 and angiotensin-(1-7) in thoracic aorta media compared with vehicle-treated rats. In contrast, immunostaining intensities for both ACE2 and angiotensin-(1-7) were not different from vehicle (n = 5) in carotid arteries of SHR medicated with either atenolol (n = 5) or hydralazine (n = 5). A comparison of vessel wall dimensions showed that olmesartan selectively reduced the thoracic aorta media-to-lumen ratio (P < 0.05) and media thickness (P < 0.05) without an effect on carotid artery morphometry. Compared with vehicle-treated SHR, vascular hypertrophy determined from media and lumen measurements was not changed in SHR given either atenolol or hydralazine. These data represent the first report of ACE2 and angiotensin-(1-7) expression in the aorta and carotid arteries of SHR. Increased ACE2 and angiotensin-(1-7) in association with altered dimensions of the thoracic aorta but not carotid arteries in response to olmesartan treatment provides evidence that this pathway is regulated by AT(1) receptors and may be important in mediating the pressure-independent vascular remodeling effects of angiotensin peptides.  相似文献   

19.
Chronic pressure overload leads to an increase in the size, i.e. hypertrophy, of cardiomyocytes in the heart. However, the molecular mechanisms underlying this hypertrophy are not understood. Insulin-like growth factor-I (IGF-I) synthesized locally in the heart is known to be associated with the hypertrophic process. So far, however, cardiac IGF-I gene expression in the widely used rat model system has only been shown to be increased when the hypertrophy induced by pressure-overload was already established. Therefore, the question of whether IGF-I serves as an initiating or early-enhancing factor for the cardiac hypertrophy remains unanswered. Here, cardiac hypertension and hypertrophy were rapidly induced in the rat by complete constriction of the abdominal aorta between the origins of the renal arteries. Carotid arterial systolic blood pressure remained unchanged in sham rats but increased rapidly in the pressure-overloaded constricted rats with a sustained hypertension established by 3 days. Hypertrophy of left ventricular (LV) cardiomyocytes in constricted rats also occurred by 3 days. However, this hypertrophy was preceded by increases in LV IGF-I mRNA and protein which occurred within 1 day. These results support the hypothesis that cardiac-synthesized IGF-I is an initiating or early-enhancing factor for hypertrophy of LV cardiomyocytes.  相似文献   

20.
目的 :研究运动对高血压肥大心脏心肌初级和次级应答基因 (immediateearlygeneandlateresponsegene)表达的影响。方法 :采用Northern分子杂交方法对游泳运动 10周后自发性高血压大鼠 (spontaneouslyhypertensiverats ,SHR)心肌初级应答基因c fosmRNA和次级应答基因心钠素 (atrialnatriureticfactor ,ANF)mRNA的表达进行比较研究。结果 :游泳SHR收缩压和舒张压分别比安静SHR降低 2 2 %和 2 5 % (P <0 .0 1) ,但左心室重 /体重比值两组间无明显差异 (P >0 .0 5 )。SHR最后一次游泳 2 4h后 ,心肌c fosmRNA表达与安静SHR相比无明显差异 ,但两组大鼠比SHR的正常血压对照鼠WistarKyoto(WKY)分别提高 83 %和 80 %。游泳SHR心肌ANFmRNA表达比安静SHR降低 3 2 % ,但仍比WKY大鼠高 2 9%。结论 :SHR经过游泳运动后 ,出现心室肌ANF基因表达降低与c fos基因表达增强的不一致现象可能是运动改善高血压肥大心脏的分子机制之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号