首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The restriction of vascular plants to gypsum-rich soils under arid or semiarid climates has been reported by many authors in different parts of the world. However, factors controlling the presence of gypsophytes on these soils are far from understood. We investigated the establishment of Lepidium subulatum, a gypsophyte, in a nondisturbed semiarid gypsum-soil landscape in central Spain, both from spatial and temporal perspectives. Over 1400 seedlings were tagged, and their growth and survival were monitored for a 2-yr period. Several biotic and abiotic variables were measured to determine the factors controlling the emergence and early survival. These variables included the cover of annual plants, bryophytes, lichens, litter, gypsum crystals, bare fraction and cover of each perennial plant, and several soil properties (gravel, fine gravel, and fine-earth fraction, conductivity, pH, gypsum content, organic matter and penetrometer soil resistance). Our results support the linkage of gypsophily with some physical properties of the surface crust. Seedlings tended to establish on the gypsum surface crust, and their survival was size dependent, probably as a consequence of the necessity of rooting below the surface crust before summer drought arrives. However, once seedlings emerged, a higher survival rate occurred on the alluvial soils of the piedmont-slope boundary where soil crusts are absent or thinner. We conclude that Lepidium subulatum may be considered a refuge model endemic with a distribution range that occupies a reduced fraction of a wider habitat from which it is probably excluded by competition.  相似文献   

2.
In this paper, we report the results of an experimental study on ant pollination of three plant species inhabiting the Mediterranean high mountains (Alyssum purpureum, Arenaria tetraquetra and Sedum anglicum) and four species inhabiting the aridlands (Lepidium subulatum, Gypsophyla struthium, Frankenia thymifolia and Retama sphaerocarpa) of South-eastern Spain. We determined several plant and ant traits, as well as the composition and abundance of the pollinator assemblage. Insects belonging to 29 families and five orders visited the flowers of the plant species studied. In all but two, L. subulatum and G. struthium, the ants comprised 70–100% of the flower visitors. The results clearly show that five out of seven of these plant species were pollinated by ants. The role of the ants as pollinators seems to depend heavily on the relative abundance of the ants with respect to the other species of the pollinator assemblage, ant pollination becoming evident when ants outnumber other floral visitors. The ant-pollination systems analysed in this study may be the result of prevailing ecological conditions more than an evolutionary result of a specialized interaction.  相似文献   

3.
Long-term agricultural fertilization strategies gradually change soil properties including the associated microbial communities. Cultivated crops recruit beneficial microbes from the surrounding soil environment via root exudates. In this study, we aimed to investigate the effects of long-term fertilization strategies across field sites on the rhizosphere prokaryotic (Bacteria and Archaea) community composition and plant performance. We conducted growth chamber experiments with lettuce (Lactuca sativa L.) cultivated in soils from two long-term field experiments, each of which compared organic versus mineral fertilization strategies. 16S rRNA gene amplicon sequencing revealed the assemblage of a rhizosphere core microbiota shared in all lettuce plants across soils, going beyond differences in community composition depending on field site and fertilization strategies. The enhanced expression of several plant genes with roles in oxidative and biotic stress signalling pathways in lettuce grown in soils with organic indicates an induced physiological status in plants. Lettuce plants grown in soils with different fertilization histories were visibly free of stress symptoms and achieved comparable biomass. This suggests a positive aboveground plant response to belowground plant–microbe interactions in the rhizosphere. Besides effects of fertilization strategy and field site, our results demonstrate the crucial role of the plant in driving rhizosphere microbiota assemblage.  相似文献   

4.
四川甘洛铅锌矿区优势植物的重金属含量   总被引:17,自引:1,他引:16  
刘月莉  伍钧  唐亚  杨刚  祝亮 《生态学报》2009,29(4):2020-2026
通过野外调查采样,分析了四川凉山州甘洛县铅锌矿区土壤的重金属含量,以及矿区生长的13种优势植物对Pb、Zn、Cd、Cr、Cu的吸收与富集能力及其富集特性.结果表明,矿区土壤受Pb、Zn、Cd 3种重金属污染严重,13种植物体内的Pb含量均高于普通植物10倍以上,具有修复矿区土壤铅污染的潜力,其中植物1的转运系数和富集系数都大于1,满足Pb超富集植物的基本特征.Zn在凤尾蕨、细风轮菜、大火草、蔗茅、小飞蓬和牛茄子中含量较高.小飞蓬和紫茎泽兰的Cd含量较一般植物高出17~61倍,其中,紫茎泽兰的转运系数与富集系数均大于1,其对Cd的吸收特性值得进一步研究.  相似文献   

5.
目的探究不同施肥处理对玉米根际微生物种群结构及代谢多样性的影响。方法以生物菌肥(样品1)、复合肥(样品2)、有机肥(样品3)、生物菌肥+复合肥(样品4)、生物菌肥+有机肥(样品5)、复合肥+有机肥(样品6)和不施肥(对照)共7个处理为研究对象,利用活菌计数法测定种群结构,同时利用Biolog技术对样品进行检测,通过SPSS数据分析软件对测得的数据进行分析。结果与对照相比,样品1中细菌、酵母菌、霉菌和放线菌的数量均有所增加,其中酵母菌增加最多,每克土壤增加了1.37×10~6个;施肥处理使微生物的代谢多样性也有所增加,样品1的平均每孔颜色变化率(AWCD值)增长率最大,多样性指数(H)、均匀度指数(E)、丰富度指数(R)均增加,但优势度指数(D)降低,说明样品1的菌群多样性最高,物种数目最多,能够提高土壤的养分和肥力。结论本研究所得结果为农业生产中玉米肥料的选择及最佳配比方法提供数据。  相似文献   

6.
Whole‐plant approaches allow quantification of the temporal overlap between primary and secondary growth. If the amount of time available to grow is short, there may be a high temporal overlap between shoot growth and wood formation. We hypothesise that such overlap depends on the duration of the growing season and relates to wood anatomy. We evaluated wood anatomy, shoot longitudinal and radial growth rates, fine root production and the concentrations of non‐structural carbohydrates (NSC) in the wood of six sub‐shrub species growing in sites with contrasting climatic conditions (Lepidium subulatum, Linum suffruticosum, Salvia lavandulifolia, Satureja montana, Ononis fruticosa, Echinospartum horridum). Sub‐shrub species living in sites with a short growing season displayed a high overlap between aboveground primary and secondary growth and formed wide vessels, whereas species from the warmest and driest sites presented the reverse characteristics. The highest overlap was linked to a rapid shoot extension and thickening through the enhanced hydraulic conductivity provided by wide vessels. The reductions in NSC concentrations when growth peaked were low or moderate, indicating that sub‐shrubs accumulate NSC in excess, as do trees. The temporal overlap among primary and secondary growth in woody plants may be connected to the duration and rates of shoot and wood growth, which in turn depend on the vessel lumen area.  相似文献   

7.
Members of the phylum Acidobacteria are among the most abundant bacteria in soil. Although they have been characterized as versatile heterotrophs, it is unclear if the types and availability of organic resources influence their distribution in soil. The potential for organic resources to select for different acidobacteria was assessed using molecular and cultivation-based approaches with agricultural and managed grassland soils in Michigan. The distribution of acidobacteria varied with the carbon content of soil: the proportion of subdivision 4 sequences was highest in agricultural soils (ca. 41%) that contained less carbon than grassland soils, where the proportions of subdivision 1, 3, 4, and 6 sequences were similar. Either readily oxidizable carbon or plant polymers were used as the sole carbon and energy source to isolate heterotrophic bacteria from these soils. Plant polymers increased the diversity of acidobacteria cultivated but decreased the total number of heterotrophs recovered compared to readily oxidizable carbon. Two phylogenetically novel Acidobacteria strains isolated on the plant polymer medium were characterized. Strains KBS 83 (subdivision 1) and KBS 96 (subdivision 3) are moderate acidophiles with pH optima of 5.0 and 6.0, respectively. Both strains grew slowly (μ = 0.01 h(-1)) and harbored either 1 (strain KBS 83) or 2 (strain KBS 96) copies of the 16S rRNA encoding gene-a genomic characteristic typical of oligotrophs. Strain KBS 83 is a microaerophile, growing optimally at 8% oxygen. These metabolic characteristics help delineate the niches that acidobacteria occupy in soil and are consistent with their widespread distribution and abundance.  相似文献   

8.
Decontamination of polluted soils using plants is based on the ability of plant species (including transgenic plants) to enhance bioavailability of pollutants in the rhizosphere and support growth of pollutant‐degrading microorganisms via root exudation and plant species‐specific composition of the exudates. In this work, we review current knowledge of enantiomers of low‐molecular‐weight (LMW) organic compounds with emphasis on their use in phytoremediation. Many research studies have been performed to search for plants suitable for decontamination of polluted soils. Nevertheless, the natural occurrence of L‐ versus D‐enantiomers of dominant compounds of plant root exudates which play different roles in the complexation of heavy metals, chemoattraction, and support of pollutant‐degrading microorganisms were not included in these studies. D‐enantiomers of aliphatic organic acids and amino acids or L‐enantiomers of carbohydrates occur in high concentrations in root exudates of some plant species, especially under stress, and are less stimulatory for plants to extract heavy metals or for rhizosphere microflora to degrade pollutants compared with L‐enantiomers (organic acids and amino acids) or D‐carbohydrates. Determining the ratio of L‐ versus D‐enantiomers of organic compounds as a criterion of plant suitability for decontamination of polluted soils and development of other types of bioremediation technologies need to be subjects of future research. Chirality 26:1–20, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Sas L  Rengel Z  Tang C 《Annals of botany》2002,89(4):435-442
Nitrogen nutrition can influence cluster root formation in many wild species, but the effect of N form on cluster root formation and root exudation by white lupin is not known. In a solution culture study, we examined the effect of N nutrition (ammonium, nitrate, both or N2 fixation) on cluster root formation and H+ extrusion by white lupin plants under deficient and adequate P supply. The number of cluster roots increased greatly when plants were supplied with I microM P compared with 50 microM P, the increase being 7.8-fold for plants treated with (NH4)2SO4, 3-fold for plants treated with KNO3 and NH4NO3, and 2-4-fold for N2-fixing plants. Under P deficiency. NH4+-N supply resulted in production of a greater number and biomass of cluster roots than other N sources. Dry weight of cluster roots was 30 % higher than that of non-cluster roots in P-deficient plants treated with (NH4)2SO4 and NH4NO3. In plants treated with sufficient P (50 microM), the weight of non-cluster roots was approx. 90 % greater than that of cluster roots. Both total (micromol per plant h(-1)) and specific (micromol g(-1) root d. wt h(-1)) H+ extrusions were greatest from roots of plants supplied with (NH4)2SO4, followed by those supplied with NH4NO3 and N2 fixation, whereas plants receiving KNO3 had negative net H+ extrusion between the third and fifth week of growth (indicating uptake of protons or release of OH- ions). The rate of proton extrusion by NH4+-N-fed plants was similar under P-deficient and P-sufficient conditions. In contrast, proton exudation by N2-fixing plants and KNO3-treated plants was ten-fold greater under P deficiency than under P sufficiency. In comparison with P deficiency, plants treated with 50 microM P had a significantly higher concentration of P in roots, shoots and youngest expanded leaves (YEL). Compared with the N2 fixation and KNO3 treatments, total N concentration was highest in roots, shoots and YEL of plants supplied with (NH4)2SO4 and NH4NO3, regardless of P supply. Under P deficiency, K concentrations in roots decreased at all N supplies, especially in plants treated with (NH4)2SO4 and NH4NO3, which coincided with the greatest H+ extrusion at these P and N supplies. In conclusion, NH4-N nutrition stimulated cluster root formation and H+ extrusion by roots of P-deficient white lupin.  相似文献   

10.
R D Dallam 《Life sciences》1987,40(12):1147-1154
Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H2 35SO4) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato.  相似文献   

11.
Agricultural application of Municipal Solid Waste (MSW), as nutrient source for plants and as soil conditioner, is the most cost-effective option of MSW management because of its advantages over traditional means such as landfilling or incineration. However, agricultural application of MSW can lead to a potential environmental threat due to the presence of pathogens and toxic pollutants. Composting is an attractive alternative of MSW recycling. Application of MSW compost (MSWC) in agricultural soils can directly alter soil physico-chemical properties as well as promote plant growth. The soil microbial biomass, considered as the living part of soil organic matter, is very closely related to the soil organic matter content in many arable agricultural soils. Numerous studies, with different MSWC amendment doses on different soil types and under different water regimes revealed no detrimental effect on soil microbial biomass. In this review, we show the state of art about the effects of MSWC amendment on soil microbial biomass.  相似文献   

12.
BACKGROUND AND AIMS: Understanding the effects of the environment on the morphology and shoot growth activities of plants is crucial to identifying plant ecological strategies. This study analysed the bud morphology, bud activity, shoot growth dynamics and shoot water content at full hydration (WC(h)) of two species of Mediterranean sub-shrubs, Lepidium subulatum and Linum suffruticosum, co-existing in gypsum outcrops in north-east Spain. METHODS: Sampling was conducted monthly over 2 years in one population per species. Buds were dissected under a stereo-microscope. Shoot growth was measured as the mean increase in shoot length of 15 marked individuals between two consecutive samplings. Bud activity was studied following the variations in the number of leaf primordia shorter than 1 mm and longer than 0.025 mm in the buds. KEY RESULTS: Both species bore naked buds and displayed discontinuous seasonal patterns of shoot growth, leaf primordia formation and WC(h). The number of leaf primordia in the bud peaked before the beginning of shoot expansion. In both species, organogenesis and expansion were uncoupled throughout the year. The time lapse between these two processes varied throughout the year, and was greatest for those elements differentiated in autumn. WC(h) was more closely related to shoot expansion than to organogenesis. CONCLUSIONS: Both species displayed similar bud morphology and similar seasonal patterns of bud and shoot growth, and WC(h) as a result of the strong seasonality of the Mediterranean climate in gypsum outcrops. The beginning of the spring period of expansion of long branches coincided with maximum values of WC(h), while the rest period of summer matched minimum values. These results support the hypothesis that the growth of long branches is strongly related to WC(h).  相似文献   

13.
生态系统转换对土壤中碳水化合物的影响   总被引:10,自引:1,他引:9  
采集贵州省茂兰喀斯特原始红楼梦 林中森林土壤和相邻农田土壤,系统分析其中碳水化合物总量和各单糖的含量。并以此来查明由森林生态系统向农业生态系统转换的过程对土壤碳水化合物的影响,结果表明:相对于森林土壤,农业土壤中碳水化合物总量明显降低。在农田土壤中六糖/五糖比值有升高的趋势,其中以M/X比值最为明显,这说明,在该转换过程中植物来源的单糖组分有所降低,微生物来源的则相对增加。  相似文献   

14.
Application of external organic inputs to soils can be considered as one of the most ancient strategies in agriculture, and it has been commonly used since the very beginning of human-based agricultural practices. During all this time, application of several organic matters to agricultural soils has demonstrated their benefit to plants and soils. Organic amendments have proved to be useful in recovering soil properties, improving soil quality and, in some cases, can be directly involved in providing beneficial effects to plants. All these obtained effects finally lead to an increase in crop protection and sustainability. One most expected effect caused by the application of organic amendments, is the suppression of a wide range of soilborne pathogens (mainly bacterial and fungal pathogens) due to the induction of physicochemical and biological changes in soils. In order to get insight into the nature of the induced soil suppression of soilborne plant pathogens, the analysis of the physical, chemical and the microbial changes, pointed to the key role of beneficial activities produced by soil microorganisms finally adapted to the environmental changes produced by the influence of organic amendments. As shown in the case studies reported here, participation of soil microbes specifically selected after organic amendment is crucial in the control of fungal soilborne diseases. Moreover, the development of “omics” approaches allowed these recent studies to go one step further, revealing the main actors involved in the induced soil suppressiveness and their activities. Thus “omics” techniques will help to understand the soil and its microbiome as a whole system, and to assign the important roles of its biological components.  相似文献   

15.
筛选磷富集植物是磷矿废弃地土壤与植被修复的关键。该文以向日葵(Helianthus annuus)、苏丹草(Sorghum sudanense)、南瓜(Cucurbita moschata)为研究对象,采用盆栽试验,设置5个磷浓度(0、100、300、500和700 mg·kg–1),分别在3个不同生长时段(4周、7周、10周)内采样,对这3种植物的磷吸收和富集能力进行了比较。结果表明:(1)在相同生长时间内,向日葵、苏丹草、南瓜的地上部磷含量均随磷处理浓度的升高而增大,最大值分别为9.67 g·kg–1、4.86 g·kg–1、6.32 g·kg–1;相同浓度下,向日葵地上部磷含量随着生长时间的延长呈上升趋势,苏丹草则呈下降趋势,南瓜无显著变化;(2)3种植物的地上部磷累积量均在磷处理浓度为700 mg·kg–1时,生长10周后达到最大值,分别为217.83 mg·plant–1、93.92 mg·plant–1、135.82 mg·plant–1;(3)各浓度处理下,向日葵、苏丹草的地上部磷富集系数和转移系数均大于1.00,南瓜的地上部磷富集系数和转移系数波动较大;向日葵的富集系数和转移系数最大值分别达11.39和4.09。综合比较可知,3种植物磷吸收和富集能力的大小顺序为:向日葵>南瓜>苏丹草。向日葵各项富磷特征基本符合磷富集植物的筛选标准,可作为磷矿废弃地土壤与植被修复的备选物种。  相似文献   

16.
Greenhouse experiments were conducted to assess the influence of soil texture on the persistence, efficacy and plant protection ability of entomopathogenic nematodes (EPNs) applied to control larvae of the Diaprepes root weevil (DRW), Diaprepes abbreviatus, infesting potted citrus seedlings. Seedlings were grown in pots containing either coarse sand, fine sand, or sandy loam. Three DRW larvae were added to each of 80 pots of each soil type. 24 h later, 20 pots of each soil type that had received weevil larvae were inoculated with EPN infective juveniles (IJs) of one of the following species: Steinernema diaprepesi, Steinernema riobrave and Heterorhabditis indica. Pots of each soil without EPNs were established as controls with DRW and controls without DRWs. Subsequently, pots with larvae received three additional larvae monthly, and the experiment continued for 9 months. Plant root and top weights at the end of the experiment were affected by both soil (P≤0.0001) and nematodes (P≤0.0001), and nematode species protected plants differently in different soils (interaction P≤0.0001). Soil porosity was inversely related to plant damage by DRW, whether or not EPNs were present; and porosity was directly related to the level of plant protection by EPNs. Mortality of caged sentinel weevil larvae placed in pots near the end of the experiment was highest in pots treated with S. diaprepesi. In a second, similar experiment that included an additional undescribed steinernematid of the Steinernema glaseri-group, soil type affected root damage by DRW and root protection by EPNs in the same manner as in the first experiment. Final numbers of S. diaprepesi and Steinernema sp. as measured by real-time PCR were much greater than those of S. riobrave or H. indica in all soils. Across all treatments, the number of weevil larvae in soil at the end the experiment was inversely related to soil porosity. In all soils, fewer weevil larvae survived in soil treated with S. diaprepesi or Steinernema sp. than in controls with DRW or treatments with S. riobrave or H. indica. The results of these experiments support the hypothesis that EPNs provide greater protection of seedlings against DRW larvae in coarse textured soil than in finer textured soil. However, less vigorous growth of the control without DRW seedlings in the two finer textured soils suggests that unidentified factors that stressed seedlings in those soils also impaired the ability of seedlings to tolerate weevil herbivory.  相似文献   

17.
Abstract

The secondary metabolites produced by higher plants may act as allelochemicals to stimulate or inhibit growth of other plant species. Moringa oleifera is a multipurpose tree which have been reported, in separate studies, to promote growth of other plant species at low concentrations and inhibit the growth at high concentrations. However, allelopathic hormesis and allelochemicals from Moringa oleifera has not been reported. The present studies were conducted to evaluate hormesis, allelopathic potential and allelochemicals from Moringa oleifera leaf extract using Lepidium sativum as a test species. The results revealed that aqueous leaf extract of Moringa oleifera promoted the shoot growth of Lepidium sativum by 41% at lowest tested concentration of 2.5%, while the highest tested concentration (10%) of leaf extract inhibited shoot length and root length of Lepidium sativum by 38% and 85%, respectively, showing allelopathic hormesis. Twelve allelochemicals (p-coumaric acid, salicylic acid, p-hydroxybenzoic acid, m-coumaric acid, protocatechuic acid, ferulic acid, p-hydroxysalicylic acid, syringic acid, vanillic acid, p-hydroxybenzaldehyde, m-hydroxybenzaldehyde and gallic acid) were identified from leaf extract of Moringa oleifera. The results suggest that Moringa oleifera exhibit allelopathic hormesis which may have critical impact on defence, survival and invasion of plants in natural as well as agroecosystems.  相似文献   

18.
19.

The Eurasian gall-forming weevil Ceutorhynchus cardariae Korotyeav (Coleoptera: Curculionidae) is a biological control candidate for the invasive Eurasian Lepidium draba L. (Brassicaceae) in the western USA. Among 157 nontarget plant species that have been tested, some North American Caulanthus and Streptanthus species, confamilial with Lepidium, were found to be at potential risk of attack by C. cardariae. Many Caulanthus and Streptanthus species grow on serpentine soils, which are characterized by low nutrient content and high concentrations of various combinations of heavy metals. Some of these species accumulate heavy metals, which have been shown to act as deterrents against insect herbivory. Standard pre-release host specificity tests with C. cardariae used plants propagated on horticultural soils, which could have inflated performance by C. cardariae on Caulanthus and Streptanthus species. To examine this possibility, we assessed the performance of C. cardariae on three Caulanthus species, the federally listed threatened and endangered Streptanthus glandulosus ssp. albidus, and Lepidium draba, on plants propagated in horticultural soil or in native serpentine soil. Our study showed that native serpentine soil influenced C. cardariae attack. All plant species, including L. draba, received less feeding damage and gall formation when grown in serpentine soil. In addition, feeding by C. cardariae was much less and fewer galls were formed on the confamilial species than on L. draba, regardless of soil type. Our data show that native confamilial species restricted to specialized soil types may be at less risk of herbivore attack than predicted based on tests conducted in horticultural soil.

  相似文献   

20.
We conducted a study to evaluate the relative importance of topography, grazing, the location of individual plants (microsite), and plant species in controlling the spatial variability of soil organic matter in shortgrass steppe ecosystems. We found that the largest spatial variation occurs in concert with topography and with microsite-scale heterogeneity, with relatively little spatial variability due to grazing or to plant species. Total soil C and N, coarse and fine particulate organic matter C and N, and potentially mineralizable C were significantly affected by topography, with higher levels in toeslope positions than in midslopes or summits. Soils beneath individual plants (Bouteloua gracilis and Opuntia polyacantha) were elevated by 2–3 cm relative to surrounding soils. All pools of soil organic matter were significantly higher in the raised hummocks directly beneath plants than in the soil surface of interspaces or this layer under plants. High levels of mineral material in the hummocks suggest that erosion is an important process in their formation, perhaps in addition to biotic accumulation of litter beneath individual plants. Over 50 y of heavy grazing by cattle did not have a significant effect on most of the soil organic matter pools we studied. This result was consistent with our hypothesis that this system, with its strong dominance of belowground organic matter, is minimally influenced by aboveground herbivory. In addition, soils beneath two of the important plant species of the shortgrass steppe, B. gracilis and O. polyacantha, differed little from one another. The processes that create spatial variability in shortgrass steppe ecosystems do not affect all soil organic matter pools equally. Topographic variability, developing over pedogenic time scales (centuries to thousands of years), has the largest effect on the most stable pools of soil organic matter. The influence of microsite is most evident in the pools of organic matter that turn over at time scales that approximate the life span of individual plants (years to decades and centuries).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号