首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
肿瘤干细胞与肿瘤的形成、进展及转移息息相关。针对肿瘤干细胞的靶向治疗已成为控制并治愈恶性肿瘤的新方法。该文就肿瘤干细胞及基于肿瘤干细胞靶向治疗恶性肿瘤的策略,如针对其表面标志物、信号传导通路、诱导分化、干预微环境、免疫疗法等加以综述,为进一步开展针对肿瘤干细胞的靶向疗法提供参考。  相似文献   

2.
肿瘤干细胞是指肿瘤细胞群体中的未分化细胞,能够自我更新及无限增殖;通常具有正常干细胞样的多潜能性,可以分化产生异质性的肿瘤细胞及组织,对于传统的化疗药物具有耐药性。肿瘤干细胞与正常干细胞有一定的差异,如某些信号通路异常活化、细胞表面表达特异的分子等。针对肿瘤干细胞的这些特性,科学家们提出新的肿瘤治疗策略,即通过设计特异的抗体药物靶向信号通路或者细胞表面分子等,从根源上杀死肿瘤起始细胞,从而达到彻底治愈恶性肿瘤的目的。该文介绍了针对不同信号通路(如Notch和Wnt)或肿瘤细胞表面标志分子(如Ep CAM和CD44等)的抗体药物,并且探讨了抗体药物的优点以及面临的问题。  相似文献   

3.
结肠癌是一种最常见的消化道恶性肿瘤,世界范围内其发病率位列第三。大部分的结肠癌患者死亡由肿瘤的复发转移和耐药性所致,而这些过程都有肿瘤干细胞的参与。因此,靶向肿瘤干细胞将成为未来根治结肠癌的重要研究方向,而结肠癌干细胞标志物的发现则为其提供了新思路。同时,因结肠癌干细胞的生长依赖多种信号通路的作用,故其相关信号通路靶向药物的研究也将是一大发展方向。该文就目前关于结肠癌干细胞标志物及其相关信号通路抑制剂的研究进展作一综述。  相似文献   

4.
肿瘤组织中存在一小部分具有无限增殖、自我更新和多向分化能力的肿瘤干细胞。这些肿瘤干细胞,普通的放化疗很难将其根除,并成为肿瘤复发的主要原因。在许多针对肿瘤干细胞的治疗方法中,靶向治疗是目前研究的热点。靶向治疗是通过切断肿瘤干细胞传导通路,攻击肿瘤干细胞表面标志物或诱导肿瘤干细胞分化等途径,抑制或根除肿瘤干细胞,其为根治肿瘤开辟了新的研究方向。  相似文献   

5.
肿瘤组织中存在一小群能够自我更新、增殖和分化,对肿瘤的发生、发展、复发、转移起决定作用的细胞,即肿瘤干细胞(cancer stem cells,CSCs)。在传统理论方法已不能攻克癌症的情况下,肿瘤干细胞理论为我们重新认识肿瘤的起源和本质提供了新的方向和视角。从20世纪50年代至今,随着生物技术的发展,肿瘤干细胞理论经历了从设想到验证的漫长历程。但该理论自提出之日起便受到来自各方面不同观点的质疑。当今针对肿瘤干细胞癌症治疗主要集中在靶向问题上。因此,寻找特异的肿瘤干细胞标志物,探索肿瘤干细胞与周围微环境间的复杂关系以及发现调控其功能的关键信号通路成为当前研究的热点。  相似文献   

6.
乳腺癌干细胞是乳腺肿瘤内具有自我更新能力以及多向分化潜能的细胞,乳腺癌的发生﹑发展、转移﹑复发与干细胞的高致瘤性、高侵袭转移性、治疗抵抗能力密切相关。深入研究乳腺癌干细胞相关细胞因子及微环境因素的调控对乳腺癌的临床靶向治疗具有重要指导意义。该文就近年来乳腺癌干细胞调控相关信号转导通路、转录因子、表观遗传调控因子以及微环境因素进行综述,探讨乳腺癌干细胞及其相关信号因子作为乳腺癌治疗靶点的潜在价值,为临床靶向治疗乳腺癌提供新方向。  相似文献   

7.
目的 预测与筛选结直肠癌组织特异性基因,作为靶向治疗的候选靶点.方法 利用自主开发的Python语言程序分析人类正常组织与结直肠癌组织mRNA表达的组织特异性,结合人类胚胎干细胞富集基因集以及文献挖掘结果,筛选可能的与结直肠癌发生或发展相关的基因作为候选靶点,并对其进行通路分析及基因富集分析.结果 获得了结直肠癌组织特异的且与肿瘤生物学通路密切相关的4个基因,作为进一步研究的候选靶点.结论 应用生物信息学方法从芯片数据进行挖掘,可以为结直肠癌的靶向治疗提供候选靶点,并为后续的药物设计奠定基础.  相似文献   

8.
越来越多的证据显示, 肿瘤的发生、生长、转移、复发以及耐药等均与肿瘤干细胞密切相关.Hedgehog (Hh)信号通路调节胚胎发育和成体许多组织器官干细胞的自我更新与增殖.然而, 那些在正常发育过程中受到Hh信号通路调节的组织器官, 在该信号通路异常时常常发生肿瘤.这些肿瘤包括肝癌、神经胶质瘤、基底细胞癌、横纹肌肉瘤、胰腺癌、小细胞肺癌、胃癌、结肠癌、前列腺癌、黑色素瘤和多发性骨髓瘤等.介绍了近年来Hh信号通路在肿瘤发生和发展过程中的机制、在维持肿瘤干细胞自我更新方面的作用, 以及该通路的特异性抑制剂, 以显示其在肿瘤治疗中潜在的重要意义.最后, 提出了今后肿瘤干细胞Hh通路研究的重点和新思路.  相似文献   

9.
作为当前威胁人类生命的常见癌症之一,结肠癌的复发与转移严重影响了患者的预后,而近年来肿瘤干细胞理论的兴起则为肿瘤治疗提供了全新的思路。在结肠癌中,结肠癌干细胞不仅参与肿瘤的复发与转移,同时,还能引起癌细胞对化疗药产生耐药性。因其生长依赖于多种信号通路的作用,故靶向结肠癌干细胞生长所需的信号通路将成为未来根治结肠癌的重要研究方向。现就目前关于结肠癌干细胞信号通路的分子靶向抑制剂研究进展及结肠癌干细胞与化疗药耐药性的关系作一综述。  相似文献   

10.
越来越多的研究证明,在乳腺肿瘤中存在一小部分具有自我更新和分化能力的细胞,称之为乳腺肿瘤干细胞,它们在乳腺肿瘤的发生发展和迁移中起到关键作用.乳腺肿瘤干细胞的特性受到一系列细胞内、外因子的调控,包括重要的信号通路、转录因子、非编码RNA和细胞因子,如Hedgehog,Wnt,Notch,Bmi-1,microRNA93,microRNA100和IL6等,均在调控乳腺肿瘤干细胞中起重要作用.另外,肿瘤微环境中的非肿瘤细胞和非细胞成分也是调控乳腺肿瘤干细胞的一个重要因素,如间充质干细胞、巨噬细胞以及细胞因子等.由于乳腺肿瘤干细胞对传统放化疗的不敏感性,结合靶向乳腺肿瘤干细胞的治疗才能更有效地消灭肿瘤.本文就关于乳腺肿瘤干细胞的调控研究及靶向乳腺肿瘤干细胞治疗进行简要综述.  相似文献   

11.
Recent advances in research on cancer have led to understand the pathogenesis of cancer and development of new anticancer drugs. Despite of these advancements, many tumors have been found to recur, undergo metastasis and develop resistance to therapy. Accumulated evidences suggest that small population of cancer cells known as cancer stem cells (CSC) are responsible for reconstitution and propagation of the disease. CSCs possess the ability to self-renew, differentiate and proliferate like normal stem cells. CSCs also appear to have resistance to anti-cancer therapies and subsequent relapse. The underlying stemness properties of the CSCs are reliant on multiple molecular targets such as signaling pathways, cell surface molecules, tumor microenvironment, apoptotic pathways, microRNA, stem cell differentiation, and drug resistance markers. Thus an effective therapeutic strategy relies on targeting CSCs to overcome the possible tumor relapse and chemoresistance. The targeted inhibition of these stem cell biomarkers is one of the promising approaches to eliminate cancer stemness. This review article summarizes possible targets of cancer cell stemness for the complete treatment of cancer.  相似文献   

12.
Tumors consist of a mixture of heterogeneous cell types. Cancer stem cells(CSCs) are a minor sub-population within the bulk cancer fraction which has been foundto reconstitute and propagate the disease and to be frequently resistant to chemotherapy, irradiation, cytotoxic drugs and probably also against immune attack. CSCs are considered as the seeds of tumor recurrence, driving force of tumorigenesis and metastases. This underlines the urgent need for innovative methods to identify and target CSCs. However, the role and existence of CSCs in therapy resistance and cancer recurrence remains a topic of intense debate. The underlying biological properties of the tumor stem cells are extremely dependent on numerous signals, and the targeted inhibition of these stem cell signaling pathways is one of the promising approaches of the new antitumor therapy approaches. This perspective review article summarizes the novel methods of tracing CSCs and discusses the hallmarks of CSC identification influenced by the microenvironment or by having imperfect detection markers. In addition, explains the known molecular mechanisms of therapy resistance in CSCs as reliable and clinically predictive markers that could enable the use of new targeted antitumor therapy in the sense of personalized medicine.  相似文献   

13.
Cancer is one amongst the major causes of death today and cancer biology is one of the most well researched fields in medicine. The driving force behind cancer is considered to be a minor subpopulation of cells, the cancer stem cells (CSCs). Similar to other stem cells, these cells are self-renewing and proliferating but CSCs are also difficult to target by chemo- or radio-therapies. Cancer stem cells are known to be present in most of the cancer subgroups such as carcinoma, sarcoma, myeloma, leukemia, lymphomas and mixed cancer types. There is a wide gamut of factors attributed to the stemness of cancers, ranging from dysregulated signaling pathways, and activation of enzymes aiding immune evasion, to conducive tumor microenvironment, to name a few. The defining outcome of the increased presence of CSCs is tumor metastasis and relapse. Predictive medicine approach based on the plethora of CSC markers would be a move towards precision medicine to specifically identify CSC-rich tumors. In this review, we discuss the cancer subtypes and the role of different CSC specific markers in these varying subtypes. We also categorize the CSC markers based their defining trait contributing to stemness. This review thus provides a comprehensive approach to catalogue a predictive set of markers to identify the resistant and refractory cancer stem cell population within different tumor subtypes, so as to facilitate better prognosis and targeted therapeutic strategies.  相似文献   

14.
Prostate cancer (PCa) is the most diagnosed malignancy in the men worldwide. Cancer stem cells (CSCs) are the sub-population of cells present in the tumor which possess unique properties of self-renewal and multilineage differentiation thus thought to be major cause of therapy resistance, disease relapse, and mortality in several malignancies including PCa. CSCs have also been shown positive for the common stem cells markers such as ALDH EZH2, OCT4, SOX2, c-MYC, Nanog etc. Therefore, isolation and characterization of CSCs specific markers which may discriminate CSCs and normal stem cells are critical to selectively eliminate CSCs. Rapid advances in the field offers a theoretical explanation for many of the enduring uncertainties encompassing the etiology and an optimism for the identification of new stem-cell targets, development of reliable and efficient therapies in the future. The emerging reports have also provided unprecedented insights into CSCs plasticity, quiescence, renewal, and therapeutic response. In this review, we discuss the identification of PCa stem cells, their unique properties, stemness-driving pathways, new diagnostics, and therapeutic interventions.  相似文献   

15.
Traditional therapies against cancer, chemo- and radiotherapy, have multiple limitations that lead to treatment failure and cancer recurrence. These limitations are related to systemic and local toxicity, while treatment failure and cancer relapse are due to drug resistance and self-renewal, properties of a small population of tumor cells called cancer stem cells (CSCs). These cells are involved in cancer initiation, maintenance, metastasis and recurrence. Therefore, in order to develop efficient treatments that can induce a long-lasting clinical response preventing tumor relapse it is important to develop drugs that can specifically target and eliminate CSCs. Recent identification of surface markers and understanding of molecular feature associated with CSC phenotype helped with the design of effective treatments. In this review we discuss targeting surface biomarkers, signaling pathways that regulate CSCs self-renewal and differentiation, drug-efflux pumps involved in apoptosis resistance, microenvironmental signals that sustain CSCs growth, manipulation of miRNA expression, and induction of CSCs apoptosis and differentiation, with specific aim to hamper CSCs regeneration and cancer relapse. Some of these agents are under evaluation in preclinical and clinical studies, most of them for using in combination with traditional therapies. The combined therapy using conventional anticancer drugs with CSCs-targeting agents, may offer a promising strategy for management and eradication of different types of cancers.  相似文献   

16.
Cancer stem cells (CSCs) are defined as a subset of slow cycling and undifferentiated cells that divide asymmetrically to generate highly proliferative, invasive, and chemoresistant tumor cells. Therefore, CSCs are an attractive population of cells to target therapeutically. CSCs are predicted to contribute to a number of types of malignancies including those in the blood, brain, lung, gastrointestinal tract, prostate, and ovary. Isolating and enriching a tumor cell population for CSCs will enable researchers to study the properties, genetics, and therapeutic response of CSCs. We generated a protocol that reproducibly enriches for ovarian cancer CSCs from ovarian cancer cell lines (SKOV3 and OVCA429). Cell lines are treated with 20 µM cisplatin for 3 days. Surviving cells are isolated and cultured in a serum-free stem cell media containing cytokines and growth factors. We demonstrate an enrichment of these purified CSCs by analyzing the isolated cells for known stem cell markers Oct4, Nanog, and Prom1 (CD133) and cell surface expression of CD177 and CD133. The CSCs exhibit increased chemoresistance. This method for isolation of CSCs is a useful tool for studying the role of CSCs in chemoresistance and tumor relapse.  相似文献   

17.
Ovarian cancer is the deadliest gynecological malignancy. It is typically diagnosed at advanced stages of the disease, with metastatic sites disseminated widely within the abdominal cavity. Ovarian cancer treatment is challenging due to high disease recurrence and further complicated pursuant to acquired chemoresistance. Cancer stem cell(CSC) theory proposes that both tumor development and progression are driven by undifferentiated stem cells capable of self-renewal and tumor-initiation. The most recent evidence revealed that CSCs in terms of ovarian cancer are not only responsible for primary tumor growth, metastasis and relapse of disease, but also for the development of chemoresistance. As the elimination of this cell population is critical for increasing treatment success, a deeper understanding of ovarian CSCs pathobiology, including epithelial-mesenchymal transition, signaling pathways and tumor microenvironment, is needed. Finally, before introducing new therapeutic agents for ovarian cancer, targeting CSCs, accurate identification of different ovarian stem cell subpopulations, including the very small embryoniclike stem cells suggested as progenitors, is necessary. To these ends, reliable markers of ovarian CSCs should be identified. In this review, we present the current knowledge and a critical discussion concerning ovarian CSCs and their clinical role.  相似文献   

18.
Tumours are known to be a heterogeneous group of cells, which is why they are difficult to eradicate. One possible cause for this is the existence of slow-cycling cancer stem cells (CSCs) endowed with stem cell-like properties of self-renewal, which are responsible for resistance to chemotherapy and radiotherapy. In recent years, the role of lipid metabolism has garnered increasing attention in cancer. Specifically, the key roles of enzymes such as stearoyl-CoA desaturase-1 and 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase in CSCs, have gained particular interest. However, despite accumulating evidence on the role of proteins in controlling lipid metabolism, very little is known about the specific role played by lipid products in CSCs. This review highlights recent findings on the role of lipid metabolism in CSCs, focusing on the specific mechanism by which bioactive lipids regulate the fate of CSCs and their involvement in signal transduction pathways.  相似文献   

19.
Cancer stem cells (CSCs) are the main cause of tumor growth, invasion, metastasis and recurrence. Recently, CSCs have been extensively studied to identify CSC-specific surface markers as well as signaling pathways that play key roles in CSCs self-renewal. The involvement of CSCs in the pathogenesis of gastrointestinal (GI) cancers also highlights these cells as a priority target for therapy. The diagnosis, prognosis and treatment of GI cancer have always been a focus of attention. Therefore, the potential application of CSCs in GI cancers is receiving increasing attention. This review summarizes the role of CSCs in GI cancers, focusing on esophageal cancer, gastric cancer, liver cancer, colorectal cancer, and pancreatic cancer. In addition, we propose CSCs as potential targets and therapeutic strategies for the effective treatment of GI cancers, which may provide better guidance for clinical treatment of GI cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号