首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 225 毫秒
1.
We investigated the effect of vitamin E on gastric mucosal injury induced by Helicobacter pylori (H. pylori) infection. Male Mongolian gerbils were divided into 4 groups (normal group without H. pylori infection, vitamin E-deficient, -sufficient and -supplemented groups with H. pylori infection). Following oral inoculation with H. pylori (ATCC43504 2 x 10(8) CFU), animals were fed diets alpha-tocopherol 2 mg/100 g diet in the normal and vitamin E-sufficient groups and alpha-tocopherol 0.1 mg/100 g and 50 mg/100 g in the vitamin E-deficient and -supplemented groups, respectively, for 24 weeks. Chronic gastritis was detected in all gerbils inoculated H. pylori. Gastric ulcer was detected in 2 of 7 gerbils only in the vitamin E-deficient group. In the vitamin E-deficient group, myeloperoxidase activity and mouse keratinocyte derived chemokine (KC) in gastric mucosa was significantly higher than in the vitamin E supplemented group. Subsequently, in an in vitro study expression of CD11b/CD18 on neutrophils was enhanced by H. pylori water extract. This effect was suppressed in a dose dependent manner by the addition of alpha-tocopherol. These results suggest that vitamin E has a protective effect on gastric mucosal injury induced by H. pylori infection in gerbils, through the inhibition of accumulation of activated neutrophils.  相似文献   

2.
3.
The activities of glucose-6-phosphate dehydrogenase, glutathione reductase and glutathione peroxidase from liver, skeletal muscles and erythrocytes of rats fed a vitamin E-deficient, or supplemented, diet were studied. Vitamin E was added in the diet either as a pure pharmacy form of alpha-tocopherol or as a tocopherol mixture derived from oil wastes. The deficiency of vitamin E caused an increase in the activity of the above mentioned enzymes. Both alpha-tocopherol and the tocopherol mixture were found to influence the glutathione peroxidase system. The dose-dependent response of the glutathione peroxidase system was revealed. Possible mechanisms of the changes in the antioxidizing enzymes induced by vitamin E are discussed.  相似文献   

4.
The effect of dietary vitamin E on the intermembrane transfer of (3R)-alpha-tocopherol, a spontaneous process accelerated in the presence of an alpha-tocopherol binding protein (alpha TBP), was examined. The transfer activity of this cytosolic liver protein was assayed via in vitro transfer of (3R)-alpha-[3H]tocopherol (alpha[3H]T) from egg lecithin liposomes to human erythrocyte ghosts (EG). Male Fisher 344 rats (1 and 20 months old) were fed diets containing 0, 30, and 500 mg/kg vitamin E (dl-alpha-tocopheryl acetate) for 15 weeks. Liver cytosol fractions were assayed for alpha[3H]T transfer activity (alpha TTA). Among young rats, those fed vitamin E-deficient diets had the highest alpha TTA, 5.02 +/- 3.10 pmole alpha[3H]T/min (mean +/- SD), which was different (P less than 0.05) from the spontaneous transfer rate of 2.10 pmole/min. Neither young rats fed 30 and 500 mg/kg vitamin E diets nor any of the aged rats showed alpha TTA which differed significantly from the spontaneous transfer rate. To examine the relationship between hepatic alpha-tocopherol levels and alpha TTA, alpha-tocopherol concentration per gram of wet liver was assayed by HPLC. A steep positive slope (6.39 +/- 1.46 pmole min-1 nmole g-1) and strong correlation (r = 0.873) between hepatic alpha-tocopherol and alpha TTA were observed (P less than 0.005) among young vitamin E-deficient rats. The data indicates that alpha TTA varies directly with hepatic alpha-tocopherol concentration when total liver vitamin E stores are very low. Thus, alpha TBP-mediated transfer of alpha-tocopherol may be manifest only when vitamin E status is compromised.  相似文献   

5.
The effect of dietary vitamin E on in vivo and in vitro damage by methyl ethyl ketone peroxide (MEKP) to cytochrome P-450 and its associated enzymatic activity was studied. In vivo, MEKP damaged microsomal cytochrome P-450 and cytochrome P-450-mediated peroxidases in vitamin E-deficient rat liver. Dietary vitamin E treatment of rats protected the microsomal enzymes from peroxide damage. In vitro, the extent of MEKP inhibition was different for tetramethylphenylenediamine (TMPD)-peroxidase, NADH-peroxidase, and aminopyrine demethylase. In vitro addition of MEKP induced production of more thiobarbituric acid reacting substances (TBARS) in liver microsomes from vitamin E-deficient rats than from vitamin E-supplemented rats. When NADH and/or NADPH were supplied as reductants of MEKP, the inhibition of aminopyrine demethylase activity and the generation of TBARS by added MEKP were markedly reduced. In vivo, adequate levels of vitamin E and of NADH and NADPH are probably necessary to provide important protection to the endoplasmic reticulum during metabolism of toxic organic peroxides, such as MEKP.  相似文献   

6.
Some peculiarities of ubiquinone (Q) biosynthesis in the livers of vitamin E-deficient rats induced in vitro by alpha-tocopherol and S-adenosylmethionine (SAM) were investigated. When [C3H3]SAM was used as a precursor, alpha-tocopherol added to the sample induced a marked elevation of the content of Q concomitantly with a drastic increase (2.82-fold) of specific radioactivity of Q in the liver as compared to control. Under identical conditions with 2-14C sodium acetate as precursor, exogenous alpha-tocopherol increased the content (by 31.4%) and specific radioactivity (by 65.2%) of Q in experimental samples, whereas the corresponding parameters of ubichromenol (QC) were essentially unchanged. SAM added to the incubation medium caused a marked increase in the content and specific radioactivity of both Q and QC as compared to control. Similar, and even more conspicuous changes were observed after combined administration of alpha-tocopherol and SAM. The role of vitamin E in the activation of methylation reactions at terminal steps of Q and QC biosynthesis in rat liver is discussed.  相似文献   

7.
The effects of dietary antioxidant vitamins E and C on exercise endurance capacity and mitochondrial oxidation were investigated in rats. The endurance capacity of both vitamin E-deficient and vitamin C-supplemented, E-deficient rats was significantly (P less than 0.05) lower (38.1 and 33.6%, respectively) than control animals. Compared with the normal and vitamin E-deficient rats, there was a significant (P less than 0.05) increase in the concentration of vitamin C in blood and liver of the vitamin E-deficient, C-supplemented animals. Hence dietary vitamin C supplementation does not prevent the inhibition of exercise endurance capacity or increased hemolysis seen in vitamin E deficiency. The mitochondrial activities for the oxidation of palmitoyl carnitine and alpha-ketoglutarate were significantly (P less than 0.05) decreased by a single bout of exercise in brown adipose tissue but not in muscle, heart, or liver from vitamin C-supplemented, E-deficient groups of rats when compared with the activities in the tissue from the same group of rats killed at rest. Similar results were also seen in brown adipose tissue from vitamin E-deficient rats. The results suggest a tissue-specific role for vitamins E and C in substrate oxidation and show that the poor endurance capacity of vitamin E-deficient rats cannot be attributed to any changes in the mitochondrial activity in skeletal or cardiac muscles. It is also concluded that vitamin C supplementation, at least at the dose employed in the present study, cannot counteract the detrimental effects associated with vitamin E deficiency.  相似文献   

8.
Experiments were conducted to determine the influence of dietary levels of vitamin A and alpha-tocopherol on the amounts and composition of retinyl esters in the retinal pigment epithelium of light-adapted albino rats. Groups of rats were fed diets containing alpha-tocopherol and either no retinyl palmitate, adequate retinyl palmitate, or excessive retinyl palmitate. Other groups of rats received diets lacking alpha-tocopherol and containing the same three levels of retinyl palmitate. Retinoic acid was added to diets lacking retinyl palmitate. After 27 weeks, the animals were light-adapted to achieve essentially total visual pigment bleaches, and the neural retinas and retinal pigment epithelium-eyecups were then dissected from each eye for vitamin A ester determinations. Almost all of the retinyl esters were found in the retinal pigment epithelium-eyecup portions of the eyes, mainly as retinyl palmitate and retinyl stearate. Maintaining rats on a vitamin A-deficient, retinoic acid-containing diet led to significant reductions in retinal pigment epithelial retinyl ester levels in rats fed both the vitamin E-supplemented and vitamin E-deficient diets; contrary to expectations, the effect of dietary vitamin A deficiency was more pronounced in the vitamin E-supplemented rats. Vitamin A deficiency in retinoic acid-maintained animals also led to significant reductions in retinyl palmitate-to-stearate ester ratios in the retinal pigment epithelia of both vitamin E-supplemented and vitamin E-deficient rats. Excessive dietary intake of vitamin A had little, if any, effect on retinal pigment epithelial retinyl ester content or composition. Vitamin E deficiency resulted in significant increases in retinal pigment epithelial retinyl palmitate content and in palmitate-to-stearate ester ratios in rats fed all three levels of vitamin A, but had little effect on retinal pigment epithelial retinyl stearate content. In other tissues, vitamin E deficiency has been shown to lower vitamin A levels, and it is widely accepted that this effect is due to autoxidative destruction of vitamin A. The increase in retinal pigment epithelial vitamin A ester levels in response to vitamin E deficiency indicates that vitamin E does not regulate vitamin A levels in this tissue primarily by acting as an antioxidant, but rather may act as an inhibitor of vitamin A uptake and/or storage. The effect of vitamin E on pigment epithelial vitamin A levels may be mediated by the vitamin E-induced change in retinyl palmitate-to-stearate ratios.  相似文献   

9.
The effects of alpha-tocopherol and its derivatives (alpha-tocopherylquinone, its short-chained analog--alpha-tocopheronolactone--and short-chained alpha-tocopherylacetate) on the levels of ubiquinone, its cyclic isomer--ubichromenol--and vitamin E in the liver and heart of vitamin E-deficient rats were studied. After injection of alpha-tocopherol derivatives the levels of ubichromenol and ubiquinone in rat liver and heart were increased, while their ratio was decreased. alpha-Tocopheronolactone was found to exert the strongest action, which is probably due to its direct effect on ubiquinone metabolism in rat tissues.  相似文献   

10.
Some 80 years after its discovery, vitamin E has experienced a renaissance which is as surprising as it is trivial. Although vitamin E is essential for reproduction, in rats at least, and deficiency causes neurological disorders in humans, the main interest in the last decades has concentrated on its antioxidant functions. This focus has highly underestimated the biological importance of vitamin E, which by far exceeds the need for acting as a radical scavenger. Only recently has it become clear that vitamin E can regulate cellular signaling and gene expression. Out of the eight different tocols included in the term vitamin E, alpha-tocopherol often exerts specific functions, which is also reflected in its selective recognition by proteins such as the alpha-tocopherol transfer protein and alpha-tocopherol-associated proteins. Vitamin E forms other than alpha-tocopherol are very actively metabolised, which explains their low biopotency. In vivo, metabolism may also attenuate the novel functions of gamma-tocopherol and tocotrienols observed in vitro. On the other hand, metabolites derived from individual forms of vitamin E have been shown to exert effects by themselves. This article focuses on the metabolism and novel functions of vitamin E with special emphasis on differential biological activities of individual vitamin E forms.  相似文献   

11.
Platelets from vitamin E-deficient and vitamin E-supplemented rats generate the same amount of thromboxane A2 (TxA2) when they are incubated with unesterified arachidonic acid. Platelets from vitamin E-deficient rats produced more TxA2 than platelets from vitamin E-supplemented rats when the platelets are challenged with collagen. Arterial tissue from vitamin E-deficient rats generates less prostacyclin (PGI2) than arterial tissue from vitamin E- supplemented rats. The vitamin E effect with arterial tissue is observed when the tissue is incubated with and without added unesterified arachidonic acid. These data show that arterial prostacyclin synthesis is diminished in vitamin E-deficient rats. Vitamin E, in vivo, inhibits platelet aggregation both by lowering platelet TxA2 and by raising arterial PGI2.  相似文献   

12.
1. The liver intracellular distribution of (75)Se, (75)Se(2-) and (75)SeO(3) (2-) formed from orally administered Na(2) (75)SeO(3) was studied in rats given four different dietary treatments. 2. Subcellular fractionation was done by using sucrose density gradients in a B XIV zonal centrifuge rotor, and conditions were established so that separation of lysosomal, mitochondrial, smooth- and rough-surfaced endoplasmic reticulum, and soluble fractions was achieved. 3. Marker enzymes acid phosphatase, succinate-2 - p - iodophenyl - 3 - p -nitrophenyl - 5 - phenyltetrazolium reductase and glucose 6-phosphatase were used, together with electron microscopy, to establish the identity of the fractions. 4. The dietary treatments investigated were: (a) vitamin E-deficient diet for 3 months, re-fed with vitamin E during the terminal 5 days; (b) vitamin E-deficient diet; (c) adequate diet; (d) vitamin E- and selenium-deficient diet, re-fed with vitamin E during the terminal 5 days. 5. In adequately fed rats, selenide was particularly associated with the mitochondrial fractions; in vitamin E-deficient rats, little selenide was found and the buoyant density of the mitochondria was increased, whereas re-feeding with vitamin E showed a restoration of the normal pattern. In vitamin E- and selenium-deficient rats, re-fed with vitamin E, there was no tendency for selenide to be localized in the mitochondria. 6. In the microsomal regions of the gradients, adequately fed rats showed a concentration of selenide, particularly in the smooth endoplasmic reticulum fractions, and to a lesser extent in the rough endoplasmic reticulum fractions. This was not observed in vitamin E-deficient rats, and the normal pattern was restored on re-feeding with vitamin E, both in rats given the vitamin E-deficient diet and the vitamin E- and selenium-deficient diet. 7. Some selenide was also found in the soluble fractions, when vitamin E was present, and a substantial proportion of this selenide was found to pass through a dialysis membrane. 8. These results are taken to support our hypothesis that the active form of selenium may be selenide located in non-haem iron-containing proteins, and that the function of vitamin E may be to protect the selenide from oxidation.  相似文献   

13.
14.
Vitamin E is the major lipid-soluble chain-breaking antioxidant in mammals and plays an important role in normal development and physiology. Deficiency (whether dietary or genetic) results in primarily nervous system pathology, including cerebellar neurodegeneration and progressive ataxia (abnormal gait). However, despite the widely acknowledged antioxidant properties of vitamin E, only a few studies have directly correlated levels of reactive oxygen species with vitamin E availability in animal models. We explored the relationship between vitamin E and reactive oxygen species in two mouse models of vitamin E deficiency: dietary deficiency and a genetic model (tocopherol transfer protein, Ttp-/- mice). Both groups of mice developed nearly complete depletion of alpha-tocopherol (the major tocopherol in vitamin E) in most organs, but not in the brain, which was relatively resistant to loss of alpha-tocopherol. F4-neuroprostanes, an index of lipid peroxidation, were unexpectedly lower in brains of deficient mice compared with controls. In vivo oxidation of dihydroethidium by superoxide radical was also significantly lower in brains of deficient animals. Superoxide production by brain mitochondria isolated from vitamin E-deficient and Ttp-/- mice, measured by electron paramagnetic resonance spectroscopy, demonstrated a biphasic dependence on exogenously added alpha-tocopherol. At low concentrations, alpha-tocopherol enhanced superoxide flux from mitochondria, a response that was reversed at higher concentrations. Here we propose a mechanism, supported by molecular modeling, to explain decreased superoxide production during alpha-tocopherol deficiency and speculate that this could be a beneficial response under conditions of alpha-tocopherol deficiency.  相似文献   

15.
Inhibition of oxidative injury of biological membranes by astaxanthin   总被引:16,自引:0,他引:16  
The value of astaxanthin, a carotenoid pigment, in the treatment of oxidative injury is assessed. Astaxanthin protects the mitochondria of vitamin E-deficient rats from damage by Fe2(+)-catalyzed lipid peroxidation both in vivo and in vitro. The inhibitory effect of astaxanthin on mitochondrial lipid peroxidation is stronger than that of alpha-tocopherol. Thin layer chromatographic analysis shows that the change in phospholipid components of erythrocytes from vitamin E-deficient rats induced by Fe2+ and Fe3(+)-xanthine/xanthine oxidase system was significantly suppressed by astaxanthin. Carrageenan-induced inflammation of the paw is also significantly inhibited by administration of astaxanthin. These data indicate that astaxanthin functions as a potent antioxidant both in vivo and in vitro.  相似文献   

16.
It has been shown that free radicals are increased during intensive exercise. We hypothesized that vitamin E (vit E) deficiency, which will increase oxidative stress, would augment the training-induced adaptation of antioxidant enzymes. This study investigated the interaction effect of vit E and exercise training on oxidative stress markers and activities of antioxidant enzymes in red quadriceps and white gastrocnemius of rats in a 2x2 design. Thirty-two male rats were divided into trained vit E-adequate, trained vit E-deficient, untrained vit E-adequate, and untrained vit E-deficient groups. The two trained groups swam 6 h/day, 6 days/week for 8 weeks. The two vit E-deficient groups consumed vit E-free diet for 8 weeks. Vitamin E-training interaction effect was significant on thiobarbituric acid reactive substances (TBARSs), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in both muscles. The trained vit E-deficient group showed the highest TBARS and GPX activity and the lowest SOD activity in both muscles. A significant vit E effect on glutathione reductase and catalase was present in both muscles. Glutathione reductase and catalase activities were significantly lower in the two vit E-adequate groups combined than in the two vit E-deficient groups combined in both muscles. This study shows that vit E status and exercise training have interactive effect on oxidative stress and GPX and SOD activities in rat skeletal muscles. Vitamin E deprivation augmented the exercise-induced elevation in GPX activity while inhibiting exercise-induced SOD activity, possibly through elevated oxidative stress.  相似文献   

17.
《Free radical research》2013,47(5-6):315-322
Effects of dietary vitamin E deficiency on the fatty acid compositions of total lipids and phospholipids were studied in several tissues of rats fed a vitamin E-deficient diet for 4, 6, and 9 months. No significant differences were observed between the vitamin E deficiency and controls except in the fatty acid profiles of liver total lipids. Triacylglycerol (TAG) accumulation was found in the liver of rats fed a vitamin E-deficient diet. The levels of TAG-palmitate and -oleate increased particularly in the liver from such animals. The fatty acid compositions of hepatic phospholipids were not affected by the diet. Increased TAG observed in the liver of rats fed a vitamin E-deficient diet was restored to normal when the diet was supplemented with 20 mg α-tocopheryl acetate/kg diet. These findings indicate that dietary vitamin E deficiency causes TAG accumulation in the liver and that the antioxidant, vitamin E, is capable of preventing free radical-induced liver injury.  相似文献   

18.
The object of this study was to assess the influence of high levels of dietary vitamin E on vitamin E concentrations in specific areas of the brain. Four-week-old male rats were fed vitamin E-deficient, control, and high-vitamin E (1,000 IU/kg) diets for 4 months. Concentrations of alpha-tocopherol in serum, adipose tissue, liver, cerebrum, cerebellum, and striatum were determined by liquid chromatography with fluorescence detection. In the high-vitamin E group, alpha-tocopherol concentrations in cerebrum, cerebellum, and striatum increased uniformly to 1.4-fold of values in controls; serum, adipose tissue, and liver attained even higher concentrations: 2.2-, 2.2-, and 4.6-fold, respectively, of control values. As observed before, brain levels of alpha-tocopherol were somewhat resistant to vitamin E deficiency, in contrast to the peripheral tissues.  相似文献   

19.
The effect of dietary vitamin E on the fetal ischemic distress induced by clamping the uterotubal vessels of pregnant rats was studied. The fetal heart rate was measured by the pulsed doppler technique as an index of fetal distress induced by ischemia. On reperfusion after clamping the vessels for 9 min, the decreased fetal heart rate was restored to normal rapidly and completely in the E-supplemented group, but slowly and incompletely in the E-deficient and control groups. On reperfusion after ischemia, the amounts of lipid peroxides, measured as thiobarbituric acid (TBA)-reactive substances, were greatly increased in the fetal brain and liver and in the placenta of in the E-deficient and control groups, but not in the E-supplemented group. The vitamin E concentrations in fetal tissues were less than 10% of those in the maternal tissues. Significant differences were found in the vitamin E concentrations in the maternal serum and liver in the three groups of rats given diet containing different amounts of vitamin E for 2 weeks. No significant differences were found between the vitamin E-deficient and control groups in the levels of vitamin E in the fetal brain and liver and the placenta, but these levels were significantly lower than those in the E-supplemented group.  相似文献   

20.
Effects of vitamin E deficiency and its restoration on biochemical characteristics of hepatic peroxisomes were studied. Rats were maintained on the vitamin E-deficient diet for 25 weeks and then on a diet supplemented with vitamin E for 5 weeks. Blood hemolysis by hydrogen peroxide and lipid peroxidation in the liver increased markedly in vitamin E-deficient rats. The former returned to the control level after the resupplying of vitamin E, but the latter did not. Of liver peroxisomal enzymes, the activities of catalase, D-amino-acid oxidase and urate oxidase decreased in vitamin E-deficient rats. On the other hand, activities of fatty acyl-CoA oxidase and carnitine acetyltransferase increased significantly in vitamin E-deficient rats. All activities of these peroxisomal enzymes were restored to the control levels in vitamin E-supplemented rats. The activities of the mitochondrial, lysosomal and microsomal enzymes tested showed no apparent change except that the change of mitochondrial palmitoyltransferase was shown to be similar to that of peroxisomal fatty acid oxidation. These results were also supported by cell fractionation techniques. Following the methods of aqueous polymer two-phase systems, the characteristics of peroxisomal surface membranes altered in respect of their hydrophobicity, but not in respect of the surface charge of peroxisomal membranes. These results indicate that peroxisomal functions, especially those of the fatty acid oxidation system, change their activities more sensitively than other intracellular organelles in response to the condition of vitamin E deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号