首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
叶角、光呼吸和热耗散协同作用减轻大豆幼叶光抑制   总被引:9,自引:0,他引:9  
研究了大豆叶片逐步展开过程中的色素组成、气体交换、荧光动力学以及叶片角度等特性。随着叶片展开程度的增加 ,叶绿素含量和叶绿素 a/ b比值增加 ;光合速率 (Pn)也增加 ,揭示叶片展开过程中光合机构是逐步完善的。自然状态下 ,不同展开程度的叶片均未发生明显的光抑制 ;但将叶片平展并暴露在 12 0 0μmol/ (m2 · s)光下时幼叶发生严重的光抑制 ,伴随叶面积的增加光抑制程度减轻。强光下 ,尽管幼叶光呼吸 (Pr)的测定值较低 ,但幼叶光呼吸与总光合之比 (Pr/ Pm)较高。将叶片平展置于强光下时 ,幼叶的实际光化学效率 (ΦPSII)明显下调 ,非光化学猝灭 (NPQ)大幅增加 ;幼叶叶黄素库较大 ,光下积累较多的脱环氧化组分 ,揭示幼叶依赖叶黄素循环的热耗散增强。自然条件下测量叶片角度 ,观察到在叶片展开过程中叶柄夹角逐渐增加 ;日动态过程中幼叶的悬挂角随光强增加而明显减小 ,完全展开叶的悬挂角变化幅度很小。叶片角度的变化使实际照射到幼叶叶表的光强减少。推测较强的光呼吸、依赖叶黄素循环的热耗散以及较大的叶角变化可能是自然状态下幼叶未发生严重光抑制的原因  相似文献   

2.
干旱胁迫下大豆与玉米叶片光破坏的防御   总被引:7,自引:1,他引:6  
随干旱强度的增加,大豆叶片光呼吸速率(Pr)降低的幅度小于Pn,使Pr/Pn比率升高。在轻度及中度干旱下,PSII光化学效率(Fv/Fm)能在暗置后较快地恢复。随干旱强度的增加,叶片光化学猝灭系数下降,非光化学猝死系数升高。干旱使叶片β-胡萝卜素及紫黄质含量下降,而玉米黄质含量(Z)与叶黄素库增加。与大豆相比,玉米在干旱条件下具有较高的Z含量和较大的叶黄素库。  相似文献   

3.
干旱胁迫下大豆与玉米中叶片光破坏的防御   总被引:11,自引:0,他引:11  
随干旱强度的增加,大豆叶片光呼吸速率(Pr)降低的幅度小于Pn使Pr/Pn经率升高。在轻度及中度干旱下,PSⅡ光化学效率(Fv/Fm)能在暗置后较快地恢复。随干旱强度的增加,叶片光化学猝灭系数下降,非光化学猝灭系数升高。干旱使叶片β-胡萝卜素及紫黄质含量下降,而玉米黄质含量(Z)与叶黄素库增加。与大豆相比,玉米在干旱条件下具有较高的Z含量的较大的叶黄素库。  相似文献   

4.
干旱条件下冬小麦叶片光化学效率的降低伴随着叶黄素循环组分玉米黄质含量的增加。干旱初期,Fv/Fm的降低约在暗置这夜后完全恢复。当干旱诱导的玉米黄质含量的增加达最大值时,Fv/Fm不可逆下降,Fo上升,表明发生了光破坏。与老叶相比,干旱条件下功能叶具有较高的玉米黄质含量,对光破坏的抗性较强。推测干旱条件下老叶不可逆衰老与其依赖于叶黄素循环的耗散过剩光能能力的下降有关。  相似文献   

5.
利用叶绿素荧光技术,对强光胁迫下以及叶黄素循环抑制剂-二硫苏糖醇(DTT)和D1蛋白合成抑制剂-硫酸链霉素(SM)处理后毛竹(Phyllostachys edulis (Carr.) Lehaie)的光抑制特征进行研究。结果显示:在夏季中午强光或人为强光胁迫下,毛竹叶片最大光化学效率Fv/Fm均显著降低;在下午光强减弱或黑暗、弱光条件下,Fv/Fm可有效恢复。DTT和SM均可抑制毛竹叶片非光化学淬灭(NPQ),且DTT效果明显优于SM。另外,在强光下,DTT和SM处理均能使毛竹叶片Fv/Fm、实际光化学效率Y(Ⅱ)和光化学淬灭qP等荧光参数下降幅度增大。研究结果表明毛竹叶片具有完善的光破坏防御机制,NPQ与叶黄素循环和D1蛋白周转紧密关联,在叶片光保护机制中具有重要作用。  相似文献   

6.
干旱条件下冬小麦叶片光化学效率(Fv/Fm)的降低伴随着叶黄素循环组分玉米黄质含量的增加。干旱初期,Fv/Fm 的降低约在暗置过夜后完全恢复。当干旱诱导的玉米黄质含量的增加达最大值时,Fv/Fm 不可逆下降,Fo 上升,表明发生了光破坏。与老叶相比,干旱条件下功能叶具有较高的玉米黄质含量,对光破坏的抗性较强。推测干旱条件下老叶不可逆衰老与其依赖于叶黄素循环的耗散过剩光能能力的下降有关。  相似文献   

7.
弱光胁迫影响夏玉米光合效率的生理机制初探   总被引:7,自引:0,他引:7       下载免费PDF全文
大田条件下, 以普通夏玉米(Zea mays) ‘泰玉2号’为材料, 于授粉后1-20天遮光55% (+S), 以大田自然光照条件下生长的玉米作为对照(-S), 研究了遮光及恢复过程中玉米植株的光合性能、叶绿体荧光参数、叶黄素循环以及光能分配的变化, 初步揭示夏玉米开花后弱光条件下光适应的生理机制, 为玉米高产稳产提供理论依据。结果表明, 遮光后玉米穗位叶叶绿素含量及可溶性蛋白含量均减少, RuBP羧化酶和PEP羧化酶活性显著降低, 导致穗位叶净光合速率(Pn)迅速下降, 光饱和点也明显降低; 恢复初期Pn迅速升高, 光合关键酶活性有所增强。遮光后植株的最大光化学效率(Fv/Fm)、实际光化学效率(ФPSII)显著降低, 非光化学淬灭(NPQ)则显著升高, 而恢复初期植株穗位叶ФPSII有所升高, 表明突然暴露在自然光下的光合电子传递速率明显加快, 这与其光合速率及光合酶活性的趋势保持一致; 遮光处理对穗位叶叶黄素循环库的大小(紫黄质+花药黄质+玉米黄质(V + A + Z))影响不显著, 但使叶黄素循环的脱环氧化状态(A + Z)/(V + A + Z)增加; 遮光后植株分配于光化学反应的光能明显减少, 天线耗散光能比率显著增加, 恢复过程中植株主要以过剩非光化学反应的形式耗散过剩的光能。遮光后及恢复初期, 玉米植株的PSII原初光化学活性明显下降, 限制了光合碳代谢的电子供应从而抑制了光合作用, 主要依赖叶黄素循环途径进行能量耗散, 而在光照转换后遮光的玉米叶片在适应自然光过程中的光保护机制不断完善, 光合能力逐渐得到 恢复。  相似文献   

8.
用叶黄素循环抑制剂二硫苏糖醇(DTT)处理7h的柑橘离体叶片,其非光化学猝灭系数NPQ大幅度下降;在中等强度光(500μmol·m^-2·s^-1)和高强度光(1500μmol·m^-2·s^-1)下,DTT处理的叶片光化学效率(Fv/Fm)分别下降3.8%和39.7%,光合电子传递速率(ETR)分别下降12%和49.5%,D1蛋白含量也分别下降87%和92.3%;黑暗对DTT处理叶片的各种荧光参数和D1蛋白的影响不大。显示叶黄素循环在保护光系统(PS)II反应中心、抵御光抑制中有一定的积极效应,可能影响了D1蛋白周转。  相似文献   

9.
缺铁对大豆叶片光合作用和光系统Ⅱ功能的影响   总被引:2,自引:0,他引:2  
通过气体交换和叶绿素荧光测定研究了缺铁对大豆叶片碳同化和光系统Ⅱ的影响。缺铁条件下大豆光合速率(Pn)大幅下降;最大光化学效率(po)下降幅度较小;荧光诱导动力学曲线发生明显的变化,其中电子传递活性明显下降,K相(VK)相对荧光产量提高。缺铁大豆的天线转化效率(Fv'/Fm')、光化学猝灭系数(qP)和光系统Ⅱ实际光化学效率(ΦPSⅡ)降低,而非光化学猝灭(NPQ)则明显增加。此外,缺铁大豆的光后荧光上升增强。据此,认为铁缺乏伤害了光系统Ⅱ复合物供体侧和受体侧的电子传递;缺铁条件下光系统I环式电子传递的增强可能在维持激发能耗散和ATP供给方面起一定作用。  相似文献   

10.
光质和光强均是影响植物光合作用的重要外部因素,该文以菜豆(Phaseolus vulgaris)为材料,通过叶绿素荧光技术比较研究了菜豆叶片在不同光强的红光和蓝光下叶绿素荧光特性的变化规律。结果表明:随着红光和蓝光光强的增加,菜豆叶片的光适应下的最大光化学效率(Fv'/Fm')呈下降趋势,但与在红光下相比,蓝光下叶片的Fv'/Fm'值较高。随着蓝光光强的增加,菜豆叶片PSⅡ实际光化学效率(Y(Ⅱ))和光化学猝灭系数(q P和q L)先呈上升趋势之后逐渐趋于平稳;而随着红光光强的增加,以上参数呈下降趋势。随着红光和蓝光光强的增加,非光化学猝灭系数(NPQ)、相对电子传递速率(ETR)以及调节性能量耗散的量子产量Y(NPQ)均呈上升趋势,但与在红光下相比,蓝光下叶片NPQ和Y(NPQ)的值较低,而ETR值较高。非调节性能量耗散产量Y(NO)随着红光光强增加而呈上升趋势,而随着蓝光光强增加呈下降趋势。综上可见,随着光强的增加菜豆叶片的光化学效率呈降低趋势,但叶片在蓝光下的光化学吸收和利用效率高于红光。研究结果可为植物对光强和光质的响应提供一定的参考。  相似文献   

11.
One-year-old grapevines (Vitis labrusca L. cv. Concord) were supplied with 0, 5, 10, 15, or 20 mM nitrogen (N) in a modified Hoagland's solution twice weekly for 4 weeks. As leaf N decreased in response to N limitation, leaf chlorophyll (Chl) decreased linearly whereas leaf absorptance declined curvilinearly. Compared with high N leaves, low N leaves had lower quantum efficiency of PSII as a result of both an increase in non-photochemical quenching (NPQ) and an increase in closure of PSII reaction centres at midday under high photon flux density (PFD). Both the xanthophyll cycle pool size on a Chl basis and the conversion of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z) at noon increased with decreasing leaf N. NPQ was closely related to A+Z expressed either on a Chl basis or as a percentage of the xanthophyll cycle pool. As leaf N increased, superoxide dismutase (SOD) activity on a Chl basis decreased linearly; activities of catalase (CAT) and glutathione reductase (GR) on a Chl basis increased linearly; activities of ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR) and dehydroascorbate reductase (DHAR) expressed on the basis of Chl decreased rapidly first, then gradually reached a low level. In response to N limitation, the contents of ascorbate (AsA), dehydroascorbate (DAsA), reduced glutathione (GSH), and oxidized glutathione (GSSG) increased when expressed on a Chl basis, whereas the ratios of both AsA to DAsA and GSH to GSSG decreased. It is concluded that, in addition to decreasing light absorption by lowering Chl concentration, both xanthophyll cycle-dependent thermal energy dissipation and the antioxidant system are up-regulated to protect low N leaves from photo-oxidative damage under high light.  相似文献   

12.
砂仁不同叶位叶片的光合作用和氧化胁迫   总被引:5,自引:0,他引:5  
衰老时砂仁叶片Pmax降低,这与叶片Gs、Chi含量和可溶性蛋白质含量的降低有关.随着叶片的衰老,NPQ、AQY、F/Fm、φPsIl和qp均降低,热耗散减少,光抑制加剧,衰老后期出现光破坏.但这些参数下降的幅度均小于Pmax下降幅度.光暗反应失衡,活性氧生成增加.衰老初期(老化)叶片MDA含量没有升高,衰老中后期叶片MDA含量显著升高,表明老化叶片能有效地耗散或清除活性氧,衰老叶片则不能,尽管其sOD、APX和POD等抗氧化酶活力显著升高.上述结果表明砂仁叶片老化与氧化胁迫关系不大,衰老与氧化胁迫密切相关.  相似文献   

13.
The spatial heterogeneity of stomatal closure in response to rapid desiccation of excised well-watered Tradescantia virginiana leaves grown at moderate (55%) or high (90%) relative air humidity (RH) was studied using a chlorophyll fluorescence imaging system under non-photorespiratory conditions. Following rapid desiccation, excised leaves grown at high RH had both a greater heterogeneity and a higher average value of PSII efficiency (Phi(PSII)) compared with leaves grown at moderate RH. Larger decreases in relative water content resulted in smaller decreases in water potential and Phi(PSII) of high RH-grown leaves compared with moderate RH-grown leaves. Moreover, the Phi(PSII) of excised high RH-grown leaves decreased less with decreasing water potential, implying that the stomata of high RH-grown leaves are less sensitive to decreases in leaf water potential compared with moderate RH-grown leaves. After desiccation, some non-closing stomata were distributed around the main vein in high RH-grown leaves. Direct measurements of stomatal aperture showed 77% stomatal closure in the margins after 2 h desiccation compared with 40% closure of stomata in the main-vein areas in high RH-grown leaves. Faster closure of stomata in leaf margins compared with main-vein areas of leaves grown at high RH was related to substantially lower relative water content in these areas of the leaves.  相似文献   

14.
Abstract: Excitation energy dissipation, including the xanthophyll cycle, during senescence in wheat flag leaves grown in the field was investigated at midday and in the morning. With progress of senescence, photosynthesis (Pn) and actual PSII photochemical efficiency (ΦPSII) decreased markedly at midday. The decrease in extent of Pn was greater than that of ΦPSII. However, there was no significant decline in Pn and ΦPSII observed in the morning, except in leaves 60 days after anthesis. The kinetics of xanthophyll cycle activity, thermal dissipation (NPQ), and qf observed at midday during senescence exhibited two distinct phases. The first phase was characterized by an increase of xanthophyll cycle activity, NPQ, and qf during the first 45 days after anthesis. The second phase took place 45 days after anthesis, characterized by a dramatic decline in the above parameters. However, the qI, observed both at midday and in the morning, always increased along with senescence. A larger proportion of NPQ insensitive to DTT (an inhibitor of the de-epoxidation of V to Z) was also observed in severely senescent leaves. In the morning, only severely senescent leaves showed higher xanthophyll cycle activity, NPQ, qf, and qI. It was demonstrated that, at the beginning of senescence or under low light, wheat leaves were able to dissipate excess light energy via NPQ, depending on the xanthophyll cycle. However, the xanthophyll cycle was insufficient to protect leaves against photodamage under high light, when leaves became severely senescent. The ratio of (Fj - Fo)/(Fp - Fo) increased gradually during the first 45 days after anthesis, but dramatically increased 45 days after anthesis. We propose that another photoprotection mechanism might exist around reaction centres, activated in severely senescent leaves to protect leaves from photodamage.  相似文献   

15.
Non-photochemical quenching (NPQ) of Chl fluorescence is a mechanism for dissipating excess photon energy and is dependent on the formation of a DeltapH across the thylakoid membranes. The role of cyclic electron flow around photosystem I (PSI) (CEF-PSI) in the formation of this DeltapH was elucidated by studying the relationships between O2-evolution rate [V(O2)], quantum yield of both PSII and PSI [Phi(PSII) and Phi(PSI)], and Chl fluorescence parameters measured simultaneously in intact leaves of tobacco plants in CO2-saturated air. Although increases in light intensity raised V(O2) and the relative electron fluxes through both PSII and PSI [Phi(PSII) x PFD and Phi(PSI) x PFD] only Phi(PSI) x PFD continued to increase after V(O2) and Phi(PSII) x PFD became light saturated. These results revealed the activity of an electron transport reaction in PSI not related to photosynthetic linear electron flow (LEF), namely CEF-PSI. NPQ of Chl fluorescence drastically increased after Phi(PSII) x PFD became light saturated and the values of NPQ correlated positively with the relative activity of CEF-PSI. At low temperatures, the light-saturation point of Phi(PSII) x PFD was lower than that of Phi(PSI) x PFD and NPQ was high. On the other hand, at high temperatures, the light-dependence curves of Phi(PSII) x PFD and Phi(PSI) x PFD corresponded completely and NPQ was not induced. These results indicate that limitation of LEF induced CEF-PSI, which, in turn, helped to dissipate excess photon energy by driving NPQ of Chl fluorescence.  相似文献   

16.
In the context of an increased risk of extreme drought events across Europe during the next decades, the capacity of trees to recover and survive drought periods awaits further attention. In summer 2005, 4-year-old beech (Fagus sylvatica L.) saplings were watered regularly or were kept for 4 weeks without irrigation in the field and then re-watered again. Changes of plant water status, leaf gas exchange and Chl a fluorescence parameters, as well as alterations in leaf pigment composition were followed. During the drought period, stomatal conductance (g(s)) and net photosynthesis (P(n)) decreased in parallel with increased water deficit. After 14 days without irrigation, stomata remained closed and P(n) was almost completely inhibited. Reversible downregulation of PSII photochemistry [the maximum quantum efficiency of PSII (F(v)/F(m))], enhanced thermal dissipation of excess excitation energy and an increased ratio of xanthophyll cycle pigments to chlorophylls (because of a loss of chlorophylls) contributed to an enhanced photo-protection in severely stressed plants. Leaf water potential was restored immediately after re-watering, while g(s), P(n) and F(v)/F(m) recovered only partially during the initial phase, even when high external CO(2) concentrations were applied during the measurements, indicating lasting non-stomatal limitations. Thereafter, P(n) recovered completely within 4 weeks, meanwhile g(s) remained permanently lower in stressed than in control plants, leading to an increased 'intrinsic water use efficiency' (P(n)/g(s)). In conclusion, although severe drought stress adversely affected photosynthetic performance of F. sylvatica (a rather drought-sensitive species), P(n) was completely restored after re-watering, presumably because of physiological and morphological adjustments (e.g. stomatal occlusions).  相似文献   

17.
investigated through chlorophyll fluorescence parameters in morning glory (Ipomoea setosa) leaves, which were dipped into water, dithiothreitol (DTT) and lincomycin (LM), respectively. During the stress, both the xanthophyll cycle and D1 protein turnover could protect PSI from photoinhibition. In DTT leaves, non-photochemical quenching (NPQ) was inhibited greatly and the oxidation level of P700 (P700+) was the lowest one. However, the maximal photochemical efficiency of PSII (Fv/Fm) in DTT leaves was higher than that of LM leaves and was lower than that of control leaves. These results suggested that PSI was more sensitive to the loss of the xanthophyll cycle than PSII under high irradiance. In LM leaves, NPQ was partly inhibited, Fv/Fm was the lowest one among three treatments under high irradiance and P700+ was at a similar level as that of control leaves. These results implied that inactivation of PSII reaction centers could protect PSI from further photoinhibition. Additionally, the lowest of the number of active reaction centers to one inactive reaction center for a PSII cross-section (RC/CSo), maximal trapping rate in a PSII cross-section (TRo/CSo), electron transport in a PSII cross-section (ETo/CSo) and the highest of 1-qP in LM leaves further indicated that severe photoinhibition of PSII in LM leaves was mainly induced by inactivation of PSII reaction centers, which limited electrons transporting to PSI. However, relative to the LM leaves the higher level of RC/CSo, TRo/CSo, Fv/Fm and the lower level of 1-qP in DTT leaves indicated that PSI photoinhibition was mainly induced by the electron accumulation at the PSI acceptor side, which induced the decrease of P700+ under high irradiance.  相似文献   

18.
We hypothesized that cyclic electron flow around photosystem I (CEF-PSI) participates in the induction of non-photochemical quenching (NPQ) of chlorophyll (Chl) fluorescence when the rate of photosynthetic linear electron flow (LEF) is electron-acceptor limited. To test this hypothesis, the relationships among photosynthesis rate, electron fluxes through both PSI and PSII [Je(PSI) and Je(PSII)] and Chl fluorescence parameters were analyzed simultaneously in intact leaves of tobacco plants at several light intensities and partial pressures of ambient CO2 (Ca). At low light intensities, decreasing Ca lowered the photosynthesis rate, but Je(PSI) and Je(PSII) remained constant. Je(PSI) was larger than Je(PSII), indicating the existence of CEF-PSI. Increasing the light intensity enhanced photosynthesis and both Je(PSI) and Je (PSII). Je(PSI)/Je(PSII) also increased at high light and at high light and low Ca combined, showing a strong, positive relationship with NPQ of Chl fluorescence. These results indicated that CEF-PSI contributed to the dissipation of photon energy in excess of that consumed by photosynthesis by driving NPQ of Chl fluorescence. The main physiological function of CEF-PSI in photosynthesis of higher plants is discussed.  相似文献   

19.
Under 30-min high irradiance (1500μmol m^-2 s^-1), the roles of the xanthophyll cycle and D1 protein turnover were investigated through chlorophyll fluorescence parameters in morning glory (Ipomoea setosa) leaves, which were dipped into water, dithiothreitol (DTT) and lincomycin (LM), respectively. During the stress, both the xanthophyll cycle and D1 protein turnover could protect PSI from photoinhibition. In DTT leaves, non-photochemical quenching (NPQ) was inhibited greatly and the oxidation level of P700 (P700^+) was the lowest one. However, the maximal photochemical efficiency of PSII (Fv/Fm) in DTT leaves was higher than that of LM leaves and was lower than that of control leaves. These results suggested that PSI was more sensitive to the loss of the xanthophyll cycle than PSII under high irradiance. In LM leaves, NPQ was partly inhibited, Fv/Fm was the lowest one among three treatments under high irradiance and P700^+ was at a similar level as that of control leaves. These results implied that inactivation of PSII reaction centers could protect PSI from further photoinhibition. Additionally, the lowest of the number of active reaction centers to one inactive reaction center for a PSII cross-section (RC/CSo), maximal trapping rate in a PSll cross-section (TRo/CSo), electron transport in a PSll cross-section (ETo/CSo) and the highest of 1-qP in LM leaves further indicated that severe photoinhibition of PSII in LM leaves was mainly induced by inactivation of PSII reaction centers, which limited electrons transporting to PSh However, relative to the LM leaves the higher level of RC/CSo, TRo/CSo, Fv/Fm and the lower level of 1-qP in DTT leaves indicated that PSI photoinhibition was mainly induced by the electron accumulation at the PSI acceptor side, which induced the decrease of P700^+ under high irradiance.  相似文献   

20.
The effect of high light on spatial distribution of chlorophyll (Chl) fluorescence parameters over a lichen thallus (Umbilicaria antarctica) was investigated by imaging of Chl fluorescence parameters before and after exposure to high light (1500 micro mol m (-2) s (-1), 30 min at 5 degrees C). False colour images of F (V)/F (M) and Phi (II) distribution, taken over thallus with 0.1 mm (2) resolution, showed that maximum F (V)/F (M) and Phi (II) values were located close to the thallus centre. Minimum values were typical for thallus margins. After exposure to high light, a differential response of F (V)/F (M) and Phi (II) was found. The marginal thallus part exhibited a loss of photosynthetic activity, manifested as a lack of Chl fluorescence signal, and close-to-centre parts showed a different extent of F (V)/F (M) and Phi (II) decrease. Subsequent recovery in the dark led to a gradual return of F (V)/F (M) and Phi (II) to their initial values. Fast (30 min) and slow (1 - 22 h) phase of recovery were distinguished, suggesting a sufficient capacity of photoprotective mechanisms in U. antarctica to cope with low-temperature photoinhibition. Glutathione and xanthophyll cycle pigments were analyzed by HPLC. High light led to an increase in oxidized glutathione (GSSG), and a conversion of violaxanthin to zeaxanthin, expressed as their de-epoxidation state (DEPS). The responses of GSSG and DEPS were reversible during subsequent recovery in the dark. GSSG and DEPS were highly correlated to non-photochemical quenching (NPQ), indicating involvement of these antioxidants in the resistance of U. antarctica to high-light stress. Heterogeneity of Chl fluorescence parameters over the thallus and differential response to high light are discussed in relation to thallus anatomy and intrathalline distribution of the symbiotic alga Trebouxia sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号