首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We are interested in the cytotoxic and proinflammatory effects of particulate pollutants in the respiratory tract. We demonstrate that methanol extracts made from diesel exhaust particles (DEP) induce apoptosis and reactive oxygen species (ROS) in pulmonary alveolar macrophages and RAW 264.7 cells. The toxicity of these organic extracts mimics the cytotoxicity of the intact particles and could be suppressed by the synthetic sulfhydryl compounds, N-acetylcysteine and bucillamine. Because DEP-induced apoptosis follows cytochrome c release, we studied the effect of DEP chemicals on mitochondrially regulated death mechanisms. Crude DEP extracts induced ROS production and perturbed mitochondrial function before and at the onset of apoptosis. This mitochondrial perturbation follows an orderly sequence of events, which commence with a change in mitochondrial membrane potential, followed by cytochrome c release, development of membrane asymmetry (annexin V staining), and propidium iodide uptake. Structural damage to the mitochondrial inner membrane, evidenced by a decrease in cardiolipin mass, leads to O-*2 generation and uncoupling of oxidative phosphorylation (decreased intracellular ATP levels). N-acetylcysteine reversed these mitochondrial effects and ROS production. Overexpression of the mitochondrial apoptosis regulator, Bcl-2, delayed but did not suppress apoptosis. Taken together, these results suggest that DEP chemicals induce apoptosis in macrophages via a toxic effect on mitochondria.  相似文献   

2.
Inhaled diesel exhaust particles (DEP) exert proinflammatory effects in the respiratory tract. This effect is related to the particle content of redox cycling chemicals and is involved in the adjuvant effects of DEP in atopic sensitization. We demonstrate that organic chemicals extracted from DEP induce oxidative stress in normal and transformed bronchial epithelial cells, leading to the expression of heme oxygenase 1, activation of the c-Jun N-terminal kinase cascade, IL-8 production, as well as induction of cytotoxicity. Among these effects, heme oxygenase 1 expression is the most sensitive marker for oxidative stress, while c-Jun N-terminal kinase activation and induction of apoptosis-necrosis require incremental amounts of the organic chemicals and increased levels of oxidative stress. While a macrophage cell line (THP-1) responded in similar fashion, epithelial cells produced more superoxide radicals and were more susceptible to cytotoxic effects than macrophages. Cytotoxicity is the result of mitochondrial damage, which manifests as ultramicroscopic changes in organelle morphology, a decrease in the mitochondrial membrane potential, superoxide production, and ATP depletion. Epithelial cells also differ from macrophages in not being protected by a thiol antioxidant, N-acetylcysteine, which effectively protects macrophages against cytotoxic DEP chemicals. These findings show that epithelial cells exhibit a hierarchical oxidative stress response that differs from that of macrophages by more rapid transition from cytoprotective to cytotoxic responses. Moreover, epithelial cells are not able to convert N-acetylcysteine to cytoprotective glutathione.  相似文献   

3.
Epidemiological studies demonstrate an association between short term exposure to ambient particulate matter (PM) and cardiorespiratory morbidity and mortality. Although the biological mechanisms of these adverse effects are unknown, emerging data suggest a key role for oxidative stress. Ambient PM and diesel exhaust particles (DEP) contain redox cycling organic chemicals that induce pro-oxidative and pro-inflammatory effects in the lung. These responses are suppressed by N-acetylcysteine (NAC), which directly complexes to electrophilic DEP chemicals and exert additional antioxidant effects at the cellular level. A proteomics approach was used to study DEP-induced responses in the macrophage cell line, RAW 264.7. We demonstrate that in the dose range 10-100 microg/ml, organic DEP extracts induce a progressive decline in the cellular GSH/GSSG ratio, in parallel with a linear increase in newly expressed proteins on the two-dimensional gel. Using matrix-assisted laser desorption ionization time-of-flight mass spectrometry and electrospray ionization-liquid chromatography/mass spectrometry/mass spectrometry analysis, 32 newly induced/NAC-suppressed proteins were identified. These include antioxidant enzymes (e.g. heme oxygenase-1 and catalase), pro-inflammatory components (e.g. p38MAPK and Rel A), and products of intermediary metabolism that are regulated by oxidative stress. Heme oxygenase-1 was induced at low extract dose and with minimal decline in the GSH/GSSG ratio, whereas MAP kinase activation required a higher chemical dose and incremental levels of oxidative stress. Moreover, at extract doses >50 microg/ml, there is a steep decline in cellular viability. These data suggest that DEP induce a hierarchical oxidative stress response in which some of these proteins may serve as markers for oxidative stress during PM exposures.  相似文献   

4.
The receptor tyrosine kinase (RTK) ROR1 is overexpressed and of importance for the survival of various malignancies, including lung adenocarcinoma, breast cancer and chronic lymphocytic leukemia (CLL). There is limited information however on ROR1 in melanoma. In the present study we analysed in seven melanoma cell lines ROR1 expression and phosphorylation as well as the effects of anti-ROR1 monoclonal antibodies (mAbs) and ROR1 suppressing siRNA on cell survival. ROR1 was overexpressed at the protein level to a varying degree and phosphorylated at tyrosine and serine residues. Three of our four self-produced anti-ROR1 mAbs (clones 3H9, 5F1 and 1A8) induced a significant direct apoptosis of the ESTDAB049, ESTDAB112, DFW and A375 cell lines as well as cell death in complement dependent cytotoxicity (CDC) and antibody dependent cellular cytotoxicity (ADCC). The ESTDAB081 and 094 cell lines respectively were resistant to direct apoptosis of the four anti-ROR1 mAbs alone but not in CDC or ADCC. ROR1 siRNA transfection induced downregulation of ROR1 expression both at mRNA and protein levels proceeded by apoptosis of the melanoma cells (ESTDAB049, ESTDAB112, DFW and A375) including ESTDAB081, which was resistant to the direct apoptotic effect of the mAbs. The results indicate that ROR1 may play a role in the survival of melanoma cells. The surface expression of ROR1 on melanoma cells may support the notion that ROR1 might be a suitable target for mAb therapy.  相似文献   

5.
6.
A number of highly virulent, intracellular bacteria are known to induce cell death by apoptosis in infected host cells. In this work we demonstrate that phagocytosis of bacteria from the Escherichia coli laboratory strain K12 DH5alpha is a potent cell death stimulus for mouse macrophages. RAW264.7 mouse macrophages took up bacteria and digested them within 2-4 h as investigated with green fluorescent protein-expressing bacteria. No evidence of apoptosis was seen at 8 h postexposure, but at 24 h approximately 70% of macrophages displayed an apoptotic phenotype by a series of parameters. Apoptosis was blocked by inhibition of caspases or by forced expression of the apoptosis-inhibiting protein Bcl-2. Processing of caspase-3 and caspase-9 but not caspase-8 was seen suggesting that the mitochondrial branch of the apoptotic pathway was activated. Active effector caspases could be detected in two different assays. Because the adapter molecule myeloid differentiation factor 88 (MyD88) has been implicated in apoptosis, involvement of the Toll-like receptor pathway was investigated. In RAW264.7 cells, heat-treated bacteria were taken up poorly and failed to induce significant apoptosis. However, cell activation was almost identical between live and heat-inactivated bacteria as measured by extracellular signal-regulated kinase activation, generation of free radicals, and TNF secretion. Furthermore, primary bone marrow-derived macrophages from wild-type as well as from MyD88-deficient mice underwent apoptosis upon phagocytosis of bacteria. These results show that uptake and digestion of bacteria leads to MyD88-independent apoptosis in mouse macrophages. This form of cell death might have implications for the generation of the immune response.  相似文献   

7.
Invasive Salmonella has been reported to induce apoptosis of macrophages as part of its infection process, which may allow it to avoid detection by the innate immune system. However, the induction of apoptosis under the different host environments remains to be examined, including the oxidative stress experienced by pathogens in the macrophage milieu. To simulate in vivo oxidative conditions, Salmonella enterica serovar Typhi was grown in the presence of hydrogen peroxide and its ability to induce apoptosis of murine macrophages was assessed. Analysis of data revealed that oxidative stressed S. Typhi caused apoptotic cell death in 51% of macrophages, whereas S. Typhi grown under normal conditions accounted for apoptotic cell death in only 32% of macrophages. A significant increase in the levels of oxidants and decrease in the antioxidant was also observed which correlated with the increased generation of tumour necrosis factor alpha, interleukin-1alpha and interleukin-6. These results suggest that tumour necrosis factor alpha in conjunction with other cytokines may induce apoptotic cell death through the up-regulation of lipid peroxidation and down-regulation of superoxide dismutase. This finding may help us to understand better the host-pathogen interactions and may be of clinical importance in the development of preventive intervention against infection.  相似文献   

8.
9.
Microparticles are membrane-derived vesicles that are released from cells during activation or cell death. These particles can serve as mediators of intercellular cross-talk and induce a variety of cellular responses. Previous studies have shown that macrophages undergo apoptosis after phagocytosing microparticles. Here, we have addressed the hypothesis that microparticles trigger this process via lipid pathways. In these experiments, microparticles induced apoptosis in primary macrophage cells or cell lines (RAW 264.7 or U937) with up to a 5-fold increase. Preincubation of macrophages with phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)BP) reduced the microparticle-induced apoptosis in a dose-dependent manner. PtdIns(3,5)BP is a specific inhibitor of the acid sphingomyelinase and thus can block the generation of pro-apoptotic ceramides. Similarly, the pre-incubation of macrophages with PtdIns(3,5)BP prevented microparticle-induced upregulation of caspase 8, which is a major target molecule of ceramide action in the apoptosis pathway. PtdIns(3,5)BP, however, had no effect on the spontaneous rate of apoptosis. To evaluate further signaling pathways induced by microparticles, the extracellular signal regulated kinase (ERK-) 1 was investigated. This kinase plays a role in activating phospholipases A2 which cleaves membrane phospholipids into arachidonic acid; microparticles have been suggested to be a preferred substrate for phospholipases A2. As shown in our experiments, microparticles strongly increased the amount of phosphorylated ERK1/2 in RAW 264.7 macrophages in a time-dependent manner, peaking 15 min after co-incubation. Addition of PD98059, a specific inhibitor of ERK1, prevented the increase in apoptosis of RAW 264.7 macrophages. Together, these data suggest that microparticles perturb lipid homeostasis of macrophages and thereby induce apoptosis. These results emphasize the importance of biolipids in the cellular cross-talk of immune cells. Based on the fact that in clinical situations with excessive cell death such as malignancies, autoimmune diseases and following chemotherapies high levels of circulating microparticles might modulate phagocytosing cells, a suppression of the immune response might occur due to loss of macrophages.  相似文献   

10.
冠状病毒感染调控细胞凋亡机制研究进展   总被引:3,自引:0,他引:3  
冠状病毒是常见的感染人类和动物并造成健康危害的主要病原性微生物之一,冠状病毒感染细胞后,细胞产生免疫应答,病毒为了在细胞内转录翻译和装配下一代,应对细胞免疫应答的同时,还参与到许多细胞活动中,当细胞特定受体与病毒蛋白结合后,细胞即启动凋亡程序。冠状病毒的许多蛋白在细胞凋亡程序中起促进或抑制凋亡的不同作用,如病毒S蛋白与细胞膜死亡受体作用诱导细胞启动外在凋亡途径,病毒感染细胞后产生的M、S蛋白引起细胞内质网应激、Ca2+失衡,诱导细胞启动内在凋亡途径,而E蛋白则抑制细胞凋亡的发生。本文综述了冠状病毒对侵染细胞的促凋亡或抑制凋亡作用及其作用机制,通过了解病毒不同蛋白在各种凋亡途径中的不同作用,希望为人工干预调控细胞研究提供思路,为冠状病毒感染防控提供理论支持。  相似文献   

11.
Induction of apoptosis has been associated with a variety of exposures which result in inflammatory and fibrotic lung disorders. Macrophages are key regulatory cells in the lung; however, the role of apoptotic macrophages in those pulmonary disorders is not well characterized. In the present investigation, apoptotic macrophages were instilled into the lungs of rats to study directly the pulmonary responses to apoptotic cells. The effects of apoptotic macrophages on lung inflammation and fibrosis, as well as associated protein expression of TNF-alpha, TGF-beta, and matrix metalloproteinases (MMPs) were examined. Induction of macrophage apoptosis was carried out in vitro using a variety of known apoptosis inducers. Intratracheal administration of apoptotic macrophages (5 x 10(6) cells/rat) into the lung of rats caused an increase in pulmonary infiltration of macrophages and lung cell apoptosis 4 weeks after the treatment as indicated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. In contrast, pulmonary instillation of saline or normal control macrophages had no effect. Histological analysis of lung sections showed collagen deposition and fibrotic lesions after apoptotic cell treatment but not in control groups. Immunohistochemical studies revealed increased expression of TNF-alpha, TGF-beta, MMP2, and MMP9 in the treatment group 4 weeks after the treatment. These results suggest a role for macrophage apoptosis in the initiation of these lung disorders. This study provides direct evidence that apoptotic macrophages can induce lung inflammation and fibrosis and that this induction may be associated with increased expression of TNF-alpha, TGF-beta, MMP2, and MMP9. Published 2002 Wiley-Liss, Inc.  相似文献   

12.
Ceramide pathways modulate ethanol-induced cell death in astrocytes   总被引:4,自引:0,他引:4  
We showed previously that alcohol exposure during in vivo brain development induced astroglial damage and caused cell death. Because ceramide modulates a number of biochemical and cellular responses to stress, including apoptosis, we now investigate whether ethanol-induced cell death in astrocytes is mediated by ceramide signalling pathways triggering apoptosis. Here we show that both ethanol and ceramide are able to induce apoptotic death in cultured astrocytes, in a dose-dependent manner, and that C2-ceramide addition potentiates the apoptotic effects of ethanol. Cell death induced by ethanol is associated with stimulation of neutral and acidic sphingomyelinase (SMase) and ceramide generation, as well as with activation of stress-related kinases, c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38) and extracellular signal-regulated kinase (ERK) pathways. We also provide evidence for the participation of JNK and p38 in ethanol-induced cell death, because pharmacological inhibitors of these kinases largely prevent the apoptosis induced by ethanol or by ethanol and C2-ceramide. Furthermore, we show that ethanol-induced ERK activation triggers the stimulation of cyclo-oxygenase-2 (COX-2) and the release of prostaglandin E2, and that blockade of the mitogen-activated protein kinase kinase (MEK)/ERK pathway by PD98059 abolishes the up-regulation of COX-2 induced by ethanol plus ceramide, and decreases the ethanol-induced apoptosis. These results strongly suggest that ethanol is able to stimulate the SMase-ceramide pathway, leading to the activation of signalling pathways implicated in cell death. These findings provide an insight into the mechanisms involved in ethanol-induced astroglial cell death during brain development.  相似文献   

13.
AIMS: To study the potential apoptosis effects of cytotoxic marine bacterial metabolites on human HeLa cell line. METHODS AND RESULTS: After HeLa cells were routinely cultured, tetrazolium-based colorimetric assay for cytotoxicity was performed to screen the marine bacteria extracts showing 12 strains active. To find the potential active strain with apoptosis mechanism, a battery of apoptosis assays, including AO/EB staining, TUNEL assay (terminal-deoxynucleotidyl transferase mediated nick end labelling), gel electrophoresis and flow cytometry, were used to determine whether apoptosis was involved in HeLa cell cytotoxicity of marine bacterial extracts. The results indicated that four strains could induce cell shrinkage, cell membrane blebbing, formation of apoptotic body and DNA fragmentation. CONCLUSIONS: Crude extracts of 12 of 153 strains of marine bacteria showed cytotoxic effects with ID50 ranged from 77.20 to 199.84 microg ml(-1), in which eight strains of bacteria were associated bacteria. The metabolites in the strains of QD1-2, NJ6-3-1, NJ1-1-1 and SS6-4 were able to induce HeLa cells apoptosis. Furthermore, the assessment by flow cytometry indicated that the hypodiploid apoptotic cells increased in a time-dependent manner, suggesting that induced apoptosis occurred from 24 h to 48 h after the extracts treatment. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results suggested that the compounds from fermentation in these four marine bacterial strains could be candidates for developing apoptosis specific anti-tumour agents with lower toxicity. This study indicated that associated marine bacteria could be good source to find cytotoxic metabolites, and some cytotoxic marine bacterial metabolites could have apoptosis mechanisms.  相似文献   

14.
9,10-Phenanthrenequinone (9,10-PQ), a major component in diesel exhaust particles, is suggested to generate reactive oxygen species (ROS) through its redox cycling, leading to cell toxicity. l-Xylulose reductase (XR), a NADPH-dependent enzyme in the uronate pathway, strongly reduces alpha-dicarbonyl compounds and was thought to act as a detoxification enzyme against reactive carbonyl compounds. Here, we have investigated the role of intracellular ROS generation in apoptotic signaling in human acute T-lymphoblastic leukemia MOLT-4 cells treated with 9,10-PQ and the role of XR in the generation of ROS. Treatment with 9,10-PQ elicited not only apoptotic signaling, including mitochondrial membrane dysfunction and activation of caspases and poly(ADP-ribose) polymerase, but also intracellular ROS generation and consequent glutathione depletion. The apoptotic effects of 9,10-PQ were drastically mitigated by pretreatment with intracellular ROS scavengers, such as N-acetyl-l-cysteine, glutathione monoethyl ester, and polyethylene glycol-conjugated catalase, indicating that intracellular ROS generation is responsible for the 9,10-PQ-evoked apoptosis. Surprisingly, the ROS generation and cytotoxicity by 9,10-PQ were augmented in an XR-transformed cell line. XR indeed reduced 9,10-PQ and produced superoxide anion through redox cycling. In addition, the expression levels of XR and its mRNA in the T lymphoma cells were markedly enhanced after the exposure to 9,10-PQ, and the induction was completely abolished by the ROS scavengers. Moreover, the 9,10-PQ-induced apoptosis was partially inhibited by the pretreatment with XR-specific inhibitors. These results suggest that initially produced ROS induce XR, which accelerates the generation of ROS.  相似文献   

15.
Diesel exhaust particles (DEP) contain organic chemicals that contribute to the adverse health effects of inhaled particulate matter. Because DEP induce oxidative stress in the lung and in macrophages, effective antioxidant defenses are required. One type of defense is through the expression of the antioxidant enzyme, heme oxygenase I (HO-1). HO-1 as well as phase II detoxifying enzymes are induced via antioxidant response elements (ARE) in their promoters of that gene. We show that a crude DEP total extract, aromatic and polar DEP fractions, a benzo(a)pyrene quinone, and a phenolic antioxidant induce HO-1 expression in RAW264.7 cells in an ARE-dependent manner. N-acetyl cysteine and the flavonoid, luteolin, inhibited HO-1 protein expression. We also demonstrate that the same stimuli induce HO-1 mRNA expression in parallel with the activation of the SX2 enhancer of that gene. Mutation of the ARE core, but not the overlapping AP-1 binding sequence, disrupted SX2 activation. Finally, we show that biological agents, such as oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine, could also induce HO-1 expression via an ARE-dependent mechanism. Prior induction of HO-1 expression, using cobalt-protoporphyrin, protected RAW264.7 cells against DEP-induced toxicity. Taken together, these data show that HO-1 plays an important role in cytoprotection against redox-active DEP chemicals, including quinones.  相似文献   

16.
Macrophage death is an important feature of atherosclerosis, but the cellular mechanism for this process is largely unknown. There is increasing interest in cellular free cholesterol (FC) excess as an inducer of lesional macrophage death because macrophages accumulate large amounts of FC in vivo, and FC loading of macrophages in culture causes cell death. In this study, a cell culture model was used to explore the cellular mechanisms involved in the initial stages of FC-induced macrophage death. After 9 h of FC loading, some of the macrophages exhibited externalization of phosphatidylserine and DNA fragmentation, indicative of an apoptotic mechanism. Incubation of the cells with Z-DEVD-fluoromethylketone blocked these events, indicating dependence upon effector caspases. Macrophages from mice with mutations in either Fas or Fas ligand (FasL) demonstrated substantial resistance to FC-induced apoptosis, and FC-induced death in wild-type macrophages was blocked by an anti-FasL antibody. FC loading had no effect on the expression of cell-surface Fas but caused a small yet reproducible increase in cell-surface FasL. To determine the physiological significance of this finding, unloaded and FC-loaded Fas-deficient macrophages, which can only present FasL, were compared for their ability to induce apoptosis in secondarily added Fas-bearing macrophages. The FC-loaded macrophages were much more potent inducers of apoptosis than the unloaded macrophages, and this effect was almost completely blocked by an inhibitory anti-FasL antibody. In summary, during the early stages of FC loading of macrophages, a fraction of cells exhibited biochemical changes that are indicative of apoptosis. An important part of this event is FC-induced activation of FasL that leads to Fas-mediated apoptosis. In light of recent in vivo findings that show that apoptotic macrophages in atherosclerotic lesions express both Fas and FasL, we present a cellular model of Fas-mediated death in lesional foam cells.  相似文献   

17.
A new procedure for isolating and estimating ingested carbonaceous diesel exhaust particles (DEP) or carbon black (CB) particles by lung epithelial cells and macrophages is described. Cells were incubated with DEP or CB to examine cell-particle interaction and ingestion. After various incubation periods, the cells were separated from free extracellular DEP or CB particles by Ficoll density gradient centrifugation and dissolved in hot sodium dodecyl sulfate detergent. Insoluble DEP or CB residues were isolated by high-speed centrifugation, and the elemental carbon (EC) concentrations in the pellets were estimated by a thermal-optical-transmittance method (i.e., carbon analysis). From the EC concentration, the amount of ingested DEP or CB could be calculated. The described technique allowed the determination of the kinetics and dose dependence of DEP uptake by LA4 lung epithelial cells and MHS alveolar macrophages. Both cell types ingested DEP to a similar degree; however, the MHS macrophages took up significantly more CB than the epithelial cells. Cytochalasin D, an agent that blocks actin polymerization in the cells, inhibited approximately 80% of DEP uptake by both cell types, indicating that the process was actin-dependent in a manner similar to phagocytosis. This technique can be applied to examine the interactions between cells and particles containing EC and to study the modulation of particle uptake in diseased tissue.  相似文献   

18.
Diesel exhaust particles (DEP) are reactive oxygen species (ROS)-inducing toxic agents that damage lungs. Thioredoxin-1 (Trx-1) is a thiol protein with antioxidant and redox-regulating effects. In this study, we demonstrate that Trx-1 scavenges ROS generated by DEP and attenuates the lung injury. Intratracheal instillation of DEP resulted in the generation of more hydroxyl radicals in control mice than in human Trx-1 (hTrx-1)-transgenic mice as measured by noninvasive L-band in vivo electron spin resonance. DEP caused acute lung damage with massive infiltration of inflammatory cells in control mice, but much less damage in hTrx-1-transgenic mice. The hTrx-1 transgene protected the mice against DEP toxicity. To investigate further the molecular mechanism of the protective role of Trx-1 against DEP-induced lung injury, we used hTrx-1-transfected L-929 cells and recombinant hTrx-1 (rhTrx-1)-pretreated A-549 cells. DEP-induced ROS generation was suppressed by hTrx-1 transfection or pretreatment with rhTrx-1. Endogenous Trx-1 expression was induced by DEP in control cells. The downregulation of Akt phosphorylation by DEP resulted in apoptosis, which was prevented by Trx-1. Moreover, an Akt inhibitor canceled this protective effect of Trx-1. Collectively, the results suggest that Trx-1 exerts antioxidant effects in vivo and in vitro and that this plays a role in protection against DEP-induced lung damage by regulating Akt-mediated antiapoptotic signaling.  相似文献   

19.
Diesel exhaust particles (DEP) and their organic constituents modulate the immune system and exacerbate allergic airway inflammation. We investigated the role of DEP extract and associated polycyclic aromatic hydrocarbons (PAHs) on prostaglandin synthesis in endotoxin-activated murine macrophages and in mitogen-stimulated fibroblasts. In both macrophages and fibroblasts, DEP extract, phenanthrene, anthracene, phenanthrenequinone, and beta-napthoflavone inhibit prostaglandin production from endogenous arachidonic acid in response to ligand stimulation. However, DEP extract and PAHs do not block ligand induction of cyclooxygenase-2 (COX-2) protein, either in mitogen-stimulated fibroblasts or endotoxin-treated macrophages. Release of total arachidonic acid and total lipid products is not reduced by DEP or PAHs following ligand stimulation of macrophages or fibroblasts. DEP extract and the PAHs inhibit the activity of purified COX-2 enzyme in vitro but do not inhibit COX-1 activity. Thus, DEP and PAHs do not affect ligand-induced COX-2 gene expression, phospholipase activation, or arachidonic acid release in macrophages and fibroblasts but exert their inhibitory effect on prostaglandin production by preferentially blocking COX-2 enzyme activity.  相似文献   

20.
Immunosuppression via cell-cell contact with apoptotic cells is a well studied immunological phenomenon. Although the original studies of immune repression used primary cells, which undergo spontaneous cell death or apoptosis in response to irradiation, more recent studies have relied on chemotherapeutic agents to induce apoptosis in cell lines. In this work, we demonstrate that Jurkat cells induced to die with actinomycin D suppressed inflammatory cytokine production by macrophages, whereas cells treated with etoposide did not. This immune repression mediated by actinomycin D-treated cells did not require phagocytosis or cell-cell contact and thus occurs through a different mechanism from that seen with primary apoptotic neutrophils. Moreover, cells induced to die with etoposide and then treated for a short time with actinomycin D also suppressed macrophage responses, indicating that suppression was mediated by actinomycin D independent of the mechanism of cell death. Finally, phagocytosis of actinomycin D-treated cells caused apoptosis in macrophages, and suppression could be blocked by inhibition of caspase activity in the target macrophage. Together, these data indicate that apoptotic cells act as "Trojan horses," delivering actinomycin D to engulfing macrophages. Suppression of cytokine production by macrophages is therefore due to exposure to actinomycin D from apoptotic cells and is not the result of cell-receptor interactions. These data suggest that drug-induced death may not be an appropriate surrogate for the immunosuppressive activity of apoptotic cells. Furthermore, these effects of cytotoxic drugs on infiltrating immune phagocytes may have clinical ramifications for their use as antitumor therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号