首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
格氏栲和杉木人工林地下碳分配   总被引:8,自引:2,他引:6  
通过对福建三明36年生的格氏栲人工林和杉木人工林林木地下C分配(TBCA)进行研究,结果表明,由分室累加法直接测定的格氏栲和杉木人工林的TBCA分别为8.426和4.040 t C.hm-2.-a 1。在格氏栲和杉木人工林TBCA组成中,根系净生产量和根系呼吸各约占50%;在根系年净生产量中,细根年净生产量和粗根年净生产量各约占75%和25%。而格氏栲和杉木人工林的细根年C归还量则均约占各自TBCA的1/3(分别为33%和36%)。在假设地下C库处于稳定状态时,由C平衡法计算的格氏栲和杉木人工林的TBCA(分别为6.039t C.hm-2.-a 1和2.987 t C.hm-2.-a 1)低于分室累加法,这与两种人工林地下C库尚未达到稳定状态有关。利用R a ich and N ade lhoffer全球模式方程推算的格氏栲和杉木人工林的TBCA(分别为9.771t C.hm-2.a-1和5.344 t C.hm-2.-a 1)则高于分室累加法,这与全球模式方程只是一种全球尺度规律有关。  相似文献   

2.
Applications and limitations of the minirhizotron technique (non-destructive) in relation to two frequently used destructive methods (soil coreing and ingrowth cores) is discussed. Sequential coreing provides data on standing crop but it is difficult to obtain data on root biomass production. Ingrowth cores can provide a quick estimate of relative fine-root growth when root growth is rapid. One limitation of the ingrowth core is that no information on the time of ingrowth and mortality is obtained.The minirhizotron method, in contrast to the destructive methods permits simultaneous calculation of fine-root length production and mortality and turnover. The same fine-root segment in the same soil space can be monitored for its life time, and stored in a database for processing. The methodological difficulties of separating excavated fine roots into living and dead vitality classes are avoided, since it is possible to judge directly the successive ageing of individual roots from the images. It is concluded that the minirhizotron technique is capable of quantifying root dynamics (root-length production, mortality and longevity) and fine-root decomposition. Additionally, by combining soil core data (biomass, root length and nutrient content) and minirhizotron data (length production and mortality), biomass production and nutrient input into the soil via root mortality and decomposition can be estimated.  相似文献   

3.
应用微根管法测定细根指标方法评述   总被引:7,自引:0,他引:7  
李俊英  王孟本  史建伟 《生态学杂志》2007,26(11):1842-1848
树木细根(直径<2mm)在森林生态系统能量流动和物质循环中起着重要的作用。原有的细根生产周转研究中常采用的土钻法、内生长法、挖掘法、根室法和土柱法等,均不能直接观察到细根的动态变化。微根管法是一种非破坏性、可定点直接观察和研究植物根系的方法,为研究细根的生长、衰老、死亡、分解和再生长的过程提供了有效的工具,尤其适用于细根周转、寿命和分解等方面的研究。但该技术不能直接测定单位面积的细根生物量、细根化学组成及细根周转对土壤碳和养分循环的影响,需要与土钻法结合。本文就运用微根管法对细根生物量、生产、周转和寿命等指标的研究方法进行了评述。  相似文献   

4.
帽儿山温带落叶阔叶林细根生物量、生产力和周转率   总被引:1,自引:0,他引:1  
细根在森林生态系统能量流动与物质循环中占有重要地位,但其生物量、生产和周转测定尚存在很大的不确定性,而且局域尺度空间变异机制尚不清楚。本研究分析了帽儿山温带天然次生林活细根生物量和死细根生物量在0~100 cm剖面的垂直分布与0~20 cm细根的季节动态、生产力和周转率,对比了采用连续根钻法(包括决策矩阵法和极差法)和内生长袋(直径3和5 cm)估测细根生产力和细根周转率,并探讨了可能影响细根的林分因子。结果表明: 76.8%的活细根生物量和62.9%的死细根生物量均集中在0~20 cm土层,随着深度增加,二者均呈指数形式减少。活细根生物量和死细根生物量的季节变化不显著,可能与冬季几乎无降雪而夏季降雨异常多有关。2种直径内生长袋估计的细根生产力无显著差异;对数转换后决策矩阵、极差法和内生长法估计的细根生产力和细根周转率差异显著。随着土壤养分增加,活细根生物量和死细根生物量比值显著增加,死细根生物量显著减少,但活细根生物量、细根生产力和细根周转率均无显著变化;细根周转率与前一年地上木质生物量增长量呈显著正相关,但与当年地上木质生物量增长量无显著相关关系。  相似文献   

5.
Rising atmospheric [CO2] has the potential to alter soil carbon (C) cycling by increasing the content of recalcitrant constituents in plant litter, thereby decreasing rates of decomposition. Because fine root turnover constitutes a large fraction of annual NPP, changes in fine root decomposition are especially important. These responses will likely be affected by soil resource availability and the life history characteristics of the dominant tree species. We evaluated the effects of elevated atmospheric [CO2] and soil resource availability on the production and chemistry, mycorrhizal colonization, and decomposition of fine roots in an early- and late-successional tree species that are economically and ecologically important in north temperate forests. Open-top chambers were used to expose young trembling aspen (Populus tremuloides) and sugar maple (Acer saccharum) trees to ambient (36 Pa) and elevated (56 Pa) atmospheric CO2. Soil resource availability was composed of two treatments that bracketed the range found in the Upper Lake States, USA. After 2.5 years of growth, sugar maple had greater fine root standing crop due to relatively greater allocation to fine roots (30% of total root biomass) relative to aspen (7% total root biomass). Relative to the low soil resources treatment, aspen fine root biomass increased 76% with increased soil resource availability, but only under elevated [CO2]. Sugar maple fine root biomass increased 26% with increased soil resource availability (relative to the low soil resources treatment), and showed little response to elevated [CO2]. Concentrations of N and soluble phenolics, and C/N ratio in roots were similar for the two species, but aspen had slightly higher lignin and lower condensed tannins contents compared to sugar maple. As predicted by source-sink models of carbon allocation, pooled constituents (C/N ratio, soluble phenolics) increased in response to increased relative carbon availability (elevated [CO2]/low soil resource availability), however, biosynthetically distinct compounds (lignin, starch, condensed tannins) did not always respond as predicted. We found that mycorrhizal colonization of fine roots was not strongly affected by atmospheric [CO2] or soil resource availability, as indicated by root ergosterol contents. Overall, absolute changes in root chemical composition in response to increases in C and soil resource availability were small and had no effect on soil fungal biomass or specific rates of fine root decomposition. We conclude that root contributions to soil carbon cycling will mainly be influenced by fine root production and turnover responses to rising atmospheric [CO2], rather than changes in substrate chemistry.  相似文献   

6.
Measuring Fine Root Turnover in Forest Ecosystems   总被引:13,自引:1,他引:12  
Development of direct and indirect methods for measuring root turnover and the status of knowledge on fine root turnover in forest ecosystems are discussed. While soil and ingrowth cores give estimates of standing root biomass and relative growth, respectively, minirhizotrons provide estimates of median root longevity (turnover time) i.e., the time by which 50% of the roots are dead. Advanced minirhizotron and carbon tracer studies combined with demographic statistical methods and new models hold the promise of improving our fundamental understanding of the factors controlling root turnover. Using minirhizotron data, fine root turnover (y−1) can be estimated in two ways: as the ratio of annual root length production to average live root length observed and as the inverse of median root longevity. Fine root production and mortality can be estimated by combining data from minirhizotrons and soil cores, provided that these data are based on roots of the same diameter class (e.g., < 1 mm in diameter) and changes in the same time steps. Fluxes of carbon and nutrients via fine root mortality can then be estimated by multiplying the amount of carbon and nutrients in fine root biomass by fine root turnover. It is suggested that the minirhizotron method is suitable for estimating median fine root longevity. In comparison to the minirhizotron method, the radio carbon technique favor larger fine roots that are less dynamics. We need to reconcile and improve both methods to develop a more complete understanding of root turnover.  相似文献   

7.
为了解川西高山森林凋落物分解过程的微生物生物量特征,采用凋落物分解袋法,测定了粗枝云杉(Picea asperata)、岷江冷杉(Abies faxoniana)和红桦(Betula albosinensi)细根分解几个关键时期微生物生物量碳(MBC)、氮(MBN)和磷(MBP)的动态特征。3个树种细根分解过程中的MBC均表现为在土壤深冻期下降至全年最低点后缓慢上升,至土壤融冻中期再次下降,到生长季节增长的趋势。然而,粗枝云杉与岷江冷杉细根分解过程中的MBC最大值出现在生长季节末期,红桦细根分解过程中的MBC最大值出现在土壤冻结初期。3个树种细根分解过程中的MBN表现出相似的动态规律:土壤深冻期急剧下降至全年最低,随后在冻融季节无显著变化,生长季节明显增加,到生长季节末期达到全年最大值。另外,粗枝云杉和岷江冷杉细根分解过程中MBP均随着分解的进行呈现增加趋势,而红桦细根分解过程中的MBP在土壤融冻末期出现最大值,在生长季节中期出现另一峰值,生长季节末期明显下降。这些结果表明冬季细根分解过程中仍存在一定的土壤微生物,但受到细根质量、温度及其驱动的环境因子的深刻影响。  相似文献   

8.
Fine roots <2 mm in diameter play a key role in regulating the biogeochemical cycles of ecosystems and are important to our understanding of ecosystem responses to global climate changes. Given the sensitivity of fine roots, especially in boreal region, to climate changes, it is important to assess whether and to what extent fine roots in this region change with climates. Here, in this synthesis, a data set of 218 root studies were complied to examine fine root patterns in the boreal forest in relation to site and climatic factors. The mean fine root biomass in the boreal forest was 5.28 Mg ha?1, and the production of fine roots was 2.82 Mg ha?1 yr?1, accounting for 32% of annual net primary production of the boreal forest. Fine roots in the boreal forest on average turned over 1.07 times per year. Fine roots contained 50.9 kg ha?1 of nitrogen (N) and 3.63 kg ha?1 of phosphorous (P). In total, fine roots in the boreal forest ecosystems contain 6.1 × 107 Mg N and 4.4×106Mg P pools, respectively, about 10% of the global nutrients of fine roots. Fine root biomass, production, and turnover rate generally increased with increasing mean annual temperature and precipitation. Fine root biomass in the boreal forest decreased significantly with soil N and P availability. With increasing stand age, fine root biomass increased until about 100 years old for forest stands and then leveled off or decreased thereafter. These results of meta analysis suggest that environmental factors strongly influence fine root biomass, production, and turnover in boreal forest, and future studies should place a particular emphasis on the root-environment relationships.  相似文献   

9.
细根对植物群落功能的发挥和土壤碳库及全球碳循环具有重要意义。利用连续土钻取样法和分解袋法,于2010年5—10月整个生长季节内,对三工河流域两处长势不同的琵琶柴群落的细根(φ2mm)生物量、分解与周转规律及其与土壤环境的关系进行研究。结果表明,群落1和群落2土壤容重、土壤含水量、pH和电导率等土壤因子差异显著。两群落的细根生物量表现出相同的季节和垂直变化趋势,即在5—8月逐渐增加,8月达到最大值,9—10月份逐渐下降。平均月细根生物量分别为51.55g/m2和133.93 g/m2。群落1的活细根和死细根分别占总细根生物量的69.68%和30.32%,群落2活细根和死细根分别占总细根生物量的72.61%和27.39%。在垂直变化上,随土壤深度增加细根生物量先增加后逐渐降低,其中10—20cm土壤层次细根生物量比例最大,群落1和群落2分别占46.48%和29.15%。群落1和群落2的细根年分解率分别为34.82%、42.91%。达到半分解和95%分解时,群落1需要630 d和2933 d,群落2需要467 d和2238 d。群落1和群落2的细根净生产力分别为50.67 g/m2和178.15 g/m2,细根年周转率分别为1.41次、1.69次。逐步回归分析结果显示细根动态受土壤水分、pH值、电导度等土壤因子的显著影响,琵琶柴细根具有相对较低的分解速率和较高的周转速率。  相似文献   

10.
This research adds to the limited data on coarse and fine root biomass for blue oak (Quercus douglasii Hook and Arn.), a California deciduous oak species found extensively throughout the interior foothills surrounding the Central Valley. Root systems of six blue oak trees were analyzed using three methods — backhoe excavation, quantitative pits, and soil cores. Coarse root biomass ranged from 7 to 177 kg per tree. Rooting depth for the main root system ranged from 0.5 to 1.5 m, with an average of 70% of excavated root biomass located above 0.5 m. Of the total biomass in excavated central root systems, primary roots (including burls) accounted for 56% and large lateral roots (> 20 mm diameter) accounted for 36%. Data from cores indicated that most biomass outside of the root crown was located in fine roots and that fine root biomass decreased with depth. At surface depths (0–20 cm), small-fine (< 0.5 mm diameter) roots accounted for 71%, large-fine (0.5–2.0 mm) for 25%, and coarse (> 2 mm) for 4% of total root biomass collected with cores. Mean fine root biomass density in the top 50 cm was 0.43 kg m−3. Fine root biomass did not change with increasing distance from the trees (up to approximately 5 m). Thus, fine roots were not concentrated under the tree canopies. Our results emphasize the importance of the smallest size class of roots (<0.5 mm), which had both higher N concentration and, in the area outside the central root system, greater biomass than large fine (0.5–2.0 mm) or coarse (> 2.0 mm) roots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号