首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
植物高亲和钾离子转运蛋白HAK功能研究进展   总被引:1,自引:0,他引:1  
钾(Potassium,K)是植物生长发育重要的营养元素,素有"抗逆元素"和"品质元素"之称。在低钾环境下植物主要利用高亲和的转运蛋白进行钾离子的吸收和转运,KUP/HAK/KT作为植物体内钾离子高亲和转运蛋白家族中最大,成员最多的家族,在植物高亲和转运钾离子过程中发挥关键作用。系统阐述了植物KUP/HAK/KT家族的基本情况及其分类、高亲和钾离子转运蛋白HAK的系统发育分析、HAK转运蛋白在提高植物钾吸收,影响植物生长发育,增强植物抵抗生物胁迫和非生物胁迫能力等方面的功能研究,最后展望了钾离子转运蛋白HAK后续有待解决的问题。深入了解HAK钾转运蛋白在植物体内的作用机制对于有效提高钾肥的利用效率,提升作物产量与品质,促进农业发展等方面具有重要的现实意义。  相似文献   

2.
钾离子转运载体HAK/KUP/KT家族参与植物耐盐性的研究进展   总被引:1,自引:0,他引:1  
钾可以通过多种方式参与植物的生长和发育,在植物缓解盐等非生物胁迫方面发挥重要作用。在植物中,HAK/KUP/KT是成员数目最多的一类高亲和钾转运蛋白家族,本文对该家族成员的分类、盐胁迫下钾的吸收、转运、生理功能和分子调控机制等方面的研究进行了综述,并对该转运体家族今后的研究方向进行了展望。  相似文献   

3.
钾在植物生长发育中处于不可或缺的地位,钾离子的吸收和转运依靠钾离子通道和钾离子转运载体。植物中钾离子转运载体包括KUP/HAK/KT、Trk/HKT、KEA、CHX四个主要的家族,其中KUP/HAK/KT转运载体家族在植物的生长发育、逆境响应及信号转导中发挥重要作用。该文就该家族在以上这些功能进行总结概述。  相似文献   

4.
高等植物钾转运蛋白   总被引:3,自引:0,他引:3  
钾在植物生长发育过程中具有许多重要的作用。以模式植物拟南芥中克隆和鉴定的钾通道和转运体为基础,全面介绍了高等植物中钾转运体系家族,包括Shaker通道、KCO通道、KUP/HAK/KT转运体、HKT转运体和其它转运体。同时,分析了在高等植物中存在多种钾吸收和转运机制的可能原因。  相似文献   

5.
本文用RT-PCR的方法,首次从草莓幼果RNA中成功扩增出KUP/HAK/KT转运体基因的部分序列,经过克隆测序得到了1个长度为1252bp基因片段,编码416个氨基酸.经过与其他物种KUP/HAK/KT转运体基因序列比较相似率在70%~78%之间,氨基酸相似性在72%~88%之间.草莓KUP/HAK/KT转运体基因的成功克隆,为草莓抗褐变的研究及草莓钾元素营养代谢分子水平上的研究及果实品质的改良打下坚实的理论基础.  相似文献   

6.
对水稻KT/HAK/KUP钾离子转运蛋白家族OsHAK26起始密码子上游2 064bp序列进行分析,发现该序列除了具备TATA-Box、CAAT-Box等基本启动子元件外,还含有许多发育、激素、非生物胁迫等响应元件以及KT/HAK/KUP家族启动子普遍存在的元件。用该片段及5'端缺失的-1 473bp、-963bp、-441bp、-193bp四个片段分别取代植物瞬时表达载体pBI-221的CaMV35S启动子区域,并利用拟南芥叶肉原生质体进行瞬时表达分析。结果表明,这五种片段都具有一定的启动活性,随着长度减小,活性下降,但缺失-963bp~-441bp之间的片段却导致活性显著回升,推断该区段含有抑制元件,缺失-441bp~-193bp之间的片段导致活性大幅下降,推断-441bp~-193bp为OsHAK26基因启动子的核心启动区域。  相似文献   

7.
HKT1和HAK1等转运子介导钾离子的高亲和吸收以及K+/Na+共运转,从而可能增强Na+替代K+的能力;KAT1和KST1等离子通道介导钾离子的累积和转运,从而调节气孔细胞的渗透压,控制气孔运动。阐述了植物生物膜上离子转运机制和钾营养高效机理的某种可能的关系。这些转运子和通道的高效表达可能与植物钾营养高效有很大的相关性。  相似文献   

8.
该研究基于已公布的大豆基因组序列信息,对大豆KUP/HAK/KT钾转运体基因家族进行了全基因组鉴定,并对该家族成员的基因特征、蛋白结构、染色体定位、基因复制和表达模式等进行了全面分析,为进一步了解该家族基因的功能及培育钾高效大豆品种提供理论支撑。结果表明:(1)在大豆基因组中共鉴定30个KUP/HAK/KT基因(简写为GmHAK01~GmHAK30),这些基因分布在大豆的15条染色体上,串联复制和片段复制可能导致了GmHAKs基因在大豆基因组中的扩增。(2)大豆GmHAKs蛋白间序列一致性很高,均具有12~14个跨膜区,且都定位于质膜上。(3)进化分析表明大豆GmHAKs可聚为4个进化簇ClusterⅠ~Ⅳ,其中ClusterⅡ的成员数目最多(16个),ClusterⅣ的成员数目最少(1个)。(4)所有GmHAKs基因均包含内含子和外显子,其内含子数目在7~9个之间,且同一亚家族的GmHAKs基因大部分具有相似的内含子-外显子分布模式。(5)表达模式分析表明,大豆GmHAKs的表达大致可分为两类:一类是一些组织特异性表达的基因,包括了ClusterⅠ和ClusterⅣ的全部成员,ClusterⅡ的部分成员,他们在根(GmHAK30和GmHAK04)、花(GmHAK03和GmHAK15)、荚(GmHAK10)或种子(GmHAK25)中表达量很高;另外一类是一些非组织特异性表达的基因,包括了ClusterⅢ的全部成员和ClusterⅡ的部分成员,这些基因(GmHAK05、GmHAK17和GmHAK28等)在所有被检测的组织中均有较高的表达;KUP/HAK/KT家族基因表达模式在不同进化簇的差异化结果表明,其在进化过程可能受到了选择的作用。以上研究结果为今后研究KUP/HAK/KT家族基因功能及定向改良大豆的钾吸收物性提供了重要的基因信息,也为大豆钾高效品种的选育提供了理论基础。  相似文献   

9.
植物K+通道AKT1的研究进展   总被引:1,自引:0,他引:1  
伍国强 《植物学报》2017,52(2):225-234
钾(K)是植物生长发育必需的大量营养元素之一, 主要通过根细胞的K+通道及转运蛋白介导吸收。AKT1是Shaker型K+通道家族的重要成员, 在植物根吸收K+和体内跨膜转运中发挥重要作用。该文综述了植物AKT1的分子结构、组织特异性表达、调控机制及生物学功能等方面的研究进展, 并对该通道今后的研究方向进行了展望。  相似文献   

10.
植物钾营养高效与膜运系统的关系   总被引:1,自引:0,他引:1  
HKT1和HAK1等转运子介导钾离子的高亲和吸收以及K^ /Na^ 共运转,从而可能增强Na^ 替代K^ 能力,KAT1和KST1等离子通道介导钾离子的累积和转运,从而调节气孔细胞的渗透压,控制气孔运动,阐述了植物生物膜上离子转运机制和钾营养高效机理的某种可能的关系,这些转运子和通道的高效表达可能与植物钾营养高效有很大的相关性。  相似文献   

11.
Plant KT/KUP/HAK potassium transporters: single family - multiple functions   总被引:3,自引:0,他引:3  
Grabov A 《Annals of botany》2007,99(6):1035-1041
BACKGROUND AND AIMS: Potassium transporters belonging to the KT/KUP/HAK family are important for various aspects of plant life including mineral nutrition and the regulation of development. Genes encoding these transporters are present in the genomes of all plants, but have not been found in the genomes of Protista or Animalia. The aim of this Botanical Briefing is to analyse the function of KT/KUP/HAK transporters from evolutionary, molecular and physiological perspectives. SCOPE: This Briefing covers the phylogeny and evolution of KT/KUP/HAK transporters, the role of transporters in plant mineral nutrition and potassium homeostasis, and the role of KT/KUP/HAK transporters in plant development.  相似文献   

12.
Potassium(K~+ ) is an essential macronutrient for plant growth and development. Transporters from the KT/HAK/KUP family play crucial roles in K~+ homeostasis and cell growth in various plant species. However, their physiological roles in maize are still unknown. In this study,we cloned ZmH AK5 and ZmH AK1 and investigated their functions in maize(Zea mays L.). In situ hybridization showed that Zm HAK5 was mainly expressed in roots,especially in the epidermis, cortex, and vascular bundle.ZmH AK5 was characterized as a high-affinity K~+ transporter.Loss of function of ZmH AK5 led to defective K~+ uptake in maize, under low K~+ conditions, whereas ZmH AK5-overexpressing plants showed increased K~+ uptake activity and improved growth. ZmH AK1 was upregulated under low K~+ stress, as revealed by RT-q PCR. ZmH AK1 mediated K~+ uptake when heterologously expressed in yeast, but its transport activity was weaker than that of ZmH AK5.Overexpression of Zm HAK1 in maize significantly affected K~+ distribution in shoots, leading to chlorosis in older leaves.These findings indicate that ZmH AK5 and ZmH AK1 play distinct roles in K~+ homeostasis in maize, functioning in K~+ uptake and K~+ distribution, respectively. Genetic manipulation of ZmH AK5 may represent a feasible way to improve K~+ utilization efficiency in maize.  相似文献   

13.
Potassium transporters belonging to the KT/HAK/KUP family play an important role in plant growth, development, mineral nutrition, and stress adaptation. In this study, we identified 19 KT/HAK/KUP family genes in tomato, distributed on 10 chromosomes, by using bioinformatics methods. A complete overview of the KT/HAK/KUP (SlHAK) genes in tomato is presented, including chromosome location, phylogeny, gene structure, and evolution pattern. Phylogenetic analysis of 19 SlHAK proteins suggested that group IV of the KT/HAK/KUP family is absent in the tomato genome. In addition, five pairs of segmental duplicated paralogs and two pairs of tandem duplicated paralogs were identified in the tomato KT/HAK/KUP family. This suggests that segmental duplication is predominant for the expansion of the SlHAK genes. Calculation of the approximate dates of duplication events using the synonymous substitution rate indicated that the segmental duplication of the KT/HAK/KUP genes in tomato originated 35.89–62.77 million years ago. Adaptive evolution analysis showed that purifying selection contributed to the evolution of segmental duplicated pairs. Furthermore, Tajima’s relative rate test indicated that all segmental duplicated pairs evolved at similar rates. As a first step toward a genome-wide analysis of the KT/HAK/KUP gene family in tomato, our results provide valuable information for understanding the function and evolution of the KT/HAK/KUP gene family in tomato and other species.  相似文献   

14.
Gierth M  Mäser P 《FEBS letters》2007,581(12):2348-2356
Potassium is a major plant nutrient which has to be accumulated in great quantity by roots and distributed throughout the plant and within plant cells. Membrane transport of potassium can be mediated by potassium channels and secondary potassium transporters. Plant potassium transporters are present in three families of membrane proteins: the K(+) uptake permeases (KT/HAK/KUP), the K(+) transporter (Trk/HKT) family and the cation proton antiporters (CPA). This review will discuss the contribution of members of each family to potassium acquisition, redistribution and homeostasis.  相似文献   

15.
16.
Chlorella viruses are a source of interesting membrane transport proteins. Here we examine a putative K(+) transporter encoded by virus FR483 and related chlorella viruses. The protein shares sequence and structural features with HAK/KUP/KT-like K(+) transporters from plants, bacteria and fungi. Yeast complementation assays and Rb(+) uptake experiments show that the viral protein, termed HAKCV (high-affinity K(+) transporter of chlorella virus), is functional, with transport characteristics that are similar to those of known K(+) transporters. Expression studies revealed that the protein is expressed as an early gene during viral replication, and proteomics data indicate that it is not packaged in the virion. The function of HAKCV is unclear, but the data refute the hypothesis that the transporter acts as a substitute for viral-encoded K(+) channels during virus infection.  相似文献   

17.
18.

Background and aims

Salinity is an increasing problem for agricultural production worldwide. Understanding how Na+ enters plants is important if reducing Na+ influx, a key component of the regulation of Na+ accumulation in plants and improving salt tolerance of crop plants, is to be achieved. Our previous work indicated that two distinct low-affinity Na+ uptake pathways exist in the halophyte Suaeda maritima. Here, we report the external NaCl concentration at which uptake switches from pathway 1 to pathway 2 and the kinetics of the interaction between external K+ concentration and Na+ uptake and accumulation in S. maritima in order to determine the roles of K+ transporters or channels in low-affinity Na+ uptake.

Methods

Na+ influx, Na+ and K+ accumulations in S. maritima exposed to various concentrations of NaCl (0–200 mM) were analyzed in the absence and presence of the inhibitors TEA and Ba+ (5 mM TEA or 3 mM Ba2+) or KCl (0, 10 or 50 mM).

Results

Our earlier proposal was confirmed and extended that there are two distinct low-affinity Na+ uptake pathways in S. maritima: pathway 1 might be mediated by a HKT-type transporter under low salinity conditions and pathway 2 by an AKT1-type channel or a KUP/HAK/KT type transporter under high salinity conditions. The external NaCl concentration at which two distinct low-affinity Na+ uptake switches from pathway 1 to pathway 2, the ‘turning point’, is between 90 and 95 mM. Over a short period (12 h) of Na+ and K+ treatments, a low concentration of K+ (10 mM) facilitated Na+ uptake by S. maritima under high salinity (100–200 mM NaCl), whether or not the plants had been subjected to a longer (3 d) period of K+ starvation. The kinetics suggests that low concentration of K+ (10 mM) might activate AKT1-type channels or KUP/HAK/KT-type transporters under high salinity (100–200 mM NaCl).

Conclusions

The turning-point of external NaCl concentrations for the two low-affinity Na+ uptake pathways in Suaeda maritima is between 90 and 95 mM. A low concentration of K+ (10 mM) might activate AKT1 or KUP/HAK/KT and facilitate Na+ uptake under high salinity (100–200 mM NaCl). The kinetics of K+ on Na+ uptake and accumulation in S maritima are also consistent with there being two low-affinity Na+ uptake pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号