首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 705 毫秒
1.
The recombinant industrial Saccharomyces cerevisiae strain MA-R5 was engineered to express NADP+-dependent xylitol dehydrogenase using the flocculent yeast strain IR-2, which has high xylulose-fermenting ability, and both xylose consumption and ethanol production remarkably increased. Furthermore, the MA-R5 strain produced the highest ethanol yield (0.48 g/g) from nonsulfuric acid hydrolysate of wood chips.Successful fermentation of lignocellulosic biomass to ethanol is dependent on efficient utilization of d-xylose, which is the second most common fermentable sugar in the hydrolysate. Although the well-known fermentative yeast Saccharomyces cerevisiae is one of the most effective ethanol-producing organisms for hexose sugars, it is not able to ferment d-xylose. However, S. cerevisiae can metabolize an isomerization product of d-xylose, d-xylulose, which is phosphorylated to d-xylulose 5-phosphate, channeled through the pentose phosphate pathway and glycolysis.S. cerevisiae transformed with the XYL1 and XYL2 genes encoding xylose reductase (XR) and xylitol dehydrogenase (XDH) from Pichia stipitis (referred to as PsXR and PsXDH, respectively) acquires the ability to ferment d-xylose to ethanol (2, 5, 6, 9, 10, 12, 22). Furthermore, overexpression of the XKS1 gene encoding xylulokinase (XK) from S. cerevisiae (ScXK) has been shown to aid d-xylose utilization (4, 7, 11, 16, 23), with xylitol still a major by-product. Kuyper et al. (14) also demonstrated the successful fermentation of d-xylose to ethanol using recombinant S. cerevisiae strains expressing fungal xylose isomerase. However, these approaches are insufficient for industrial bioprocesses, mainly due to the low rate of d-xylose fermentation.Xylitol excretion has been ascribed mainly to the difference in coenzyme specificities between PsXR (with NADPH) and PsXDH (with NAD+), which creates an intracellular redox imbalance (1). Therefore, modifying the coenzyme specificity of XR and/or XDH by protein engineering is an attractive approach for achieving efficient fermentation of ethanol from d-xylose using recombinant S. cerevisiae. Watanabe et al. (24) previously succeeded in generating several PsXDH mutants (e.g., quadruple ARSdR mutant) with a complete reversal of coenzyme specificity toward NADP+ by multiple site-directed mutagenesis on amino acids from the coenzyme-binding domain. The ARSdR mutant (D207A/I208R/F209S/N211R) has more that 4,500-fold-higher catalytic efficiency (kcat/Km) with NADP+ than the wild-type PsXDH. In addition, we recently found that several laboratory recombinant S. cerevisiae strains, in which the ARSdR mutant, along with PsXR and ScXK, is expressed through a strong constitutive promoter, increased ethanol production from d-xylose at the expense of xylitol excretion (17, 18), probably by maintaining the intracellular redox balance. However, commercialization of lignocellulosic hydrolysate fermentation requires industrial strains that are more robust than laboratory strains (5, 19, 21).A potential host for developing d-xylose-fermenting strains requires an active and efficient pentose phosphate pathway linking the d-xylose-to-d-xylulose pathway to glycolysis. In the case of S. cerevisiae, strains have different d-xylulose fermentation abilities (3, 25), indicating inherent differences in the capacities of these strains to ferment pentose sugars. Furthermore, anaerobic d-xylulose fermentation was investigated to identify genetic backgrounds potentially beneficial to anaerobic d-xylose fermentation in strains not exhibiting product formation related to the redox imbalance generated by the first two steps of the eukaryotic d-xylose metabolism (3), although the physiological purpose of the different d-xylulose fermentation abilities of S. cerevisiae is not yet clear. Therefore, we selected an efficient industrial d-xylulose-fermenting S. cerevisiae strain as a host for constructing a recombinant strain through chromosomal integration of the NADP+-dependent XDH gene and the XR and endogenous XK genes. Using this recombinant strain, we characterized the enzyme activity and ability to ferment both d-xylose and lignocellulosic hydrolysate.  相似文献   

2.
l-Hydroxyproline (4-hydroxyproline) mainly exists in collagen, and most bacteria cannot metabolize this hydroxyamino acid. Pseudomonas putida and Pseudomonas aeruginosa convert l-hydroxyproline to α-ketoglutarate via four hypothetical enzymatic steps different from known mammalian pathways, but the molecular background is rather unclear. Here, we identified and characterized for the first time two novel enzymes, d-hydroxyproline dehydrogenase and Δ1-pyrroline-4-hydroxy-2-carboxylate (Pyr4H2C) deaminase, involved in this hypothetical pathway. These genes were clustered together with genes encoding other catalytic enzymes on the bacterial genomes. d-Hydroxyproline dehydrogenases from P. putida and P. aeruginosa were completely different from known bacterial proline dehydrogenases and showed similar high specificity for substrate (d-hydroxyproline) and some artificial electron acceptor(s). On the other hand, the former is a homomeric enzyme only containing FAD as a prosthetic group, whereas the latter is a novel heterododecameric structure consisting of three different subunits (α4β4γ4), and two FADs, FMN, and [2Fe-2S] iron-sulfur cluster were contained in αβγ of the heterotrimeric unit. These results suggested that the l-hydroxyproline pathway clearly evolved convergently in P. putida and P. aeruginosa. Pyr4H2C deaminase is a unique member of the dihydrodipicolinate synthase/N-acetylneuraminate lyase protein family, and its activity was competitively inhibited by pyruvate, a common substrate for other dihydrodipicolinate synthase/N-acetylneuraminate lyase proteins. Furthermore, disruption of Pyr4H2C deaminase genes led to loss of growth on l-hydroxyproline (as well as d-hydroxyproline) but not l- and d-proline, indicating that this pathway is related only to l-hydroxyproline degradation, which is not linked to proline metabolism.  相似文献   

3.
d-Alanyl:d-lactate (d-Ala:d-Lac) and d-alanyl:d-serine ligases are key enzymes in vancomycin resistance of Gram-positive cocci. They catalyze a critical step in the synthesis of modified peptidoglycan precursors that are low binding affinity targets for vancomycin. The structure of the d-Ala:d-Lac ligase VanA led to the understanding of the molecular basis for its specificity, but that of d-Ala:d-Ser ligases had not been determined. We have investigated the enzymatic kinetics of the d-Ala:d-Ser ligase VanG from Enterococcus faecalis and solved its crystal structure in complex with ADP. The overall structure of VanG is similar to that of VanA but has significant differences mainly in the N-terminal and central domains. Based on reported mutagenesis data and comparison of the VanG and VanA structures, we show that residues Asp-243, Phe-252, and Arg-324 are molecular determinants for d-Ser selectivity. These residues are conserved in both enzymes and explain why VanA also displays d-Ala:d-Ser ligase activity, albeit with low catalytic efficiency in comparison with VanG. These observations suggest that d-Ala:d-Lac and d-Ala:d-Ser enzymes have evolved from a common ancestral d-Ala:d-X ligase. The crystal structure of VanG showed an unusual interaction between two dimers involving residues of the omega loop that are deeply anchored in the active site. We constructed an octapeptide mimicking the omega loop and found that it selectively inhibits VanG and VanA but not Staphylococcus aureus d-Ala:d-Ala ligase. This study provides additional insight into the molecular evolution of d-Ala:d-X ligases and could contribute to the development of new structure-based inhibitors of vancomycin resistance enzymes.  相似文献   

4.
The first enzyme in the pathway for l-arabinose catabolism in eukaryotic microorganisms is a reductase, reducing l-arabinose to l-arabitol. The enzymes catalyzing this reduction are in general nonspecific and would also reduce d-xylose to xylitol, the first step in eukaryotic d-xylose catabolism. It is not clear whether microorganisms use different enzymes depending on the carbon source. Here we show that Aspergillus niger makes use of two different enzymes. We identified, cloned, and characterized an l-arabinose reductase, larA, that is different from the d-xylose reductase, xyrA. The larA is up-regulated on l-arabinose, while the xyrA is up-regulated on d-xylose. There is however an initial up-regulation of larA also on d-xylose but that fades away after about 4 h. The deletion of the larA gene in A. niger results in a slow growth phenotype on l-arabinose, whereas the growth on d-xylose is unaffected. The l-arabinose reductase can convert l-arabinose and d-xylose to their corresponding sugar alcohols but has a higher affinity for l-arabinose. The Km for l-arabinose is 54 ± 6 mm and for d-xylose 155 ± 15 mm.  相似文献   

5.
The enzymes of the β-decarboxylating dehydrogenase superfamily catalyze the oxidative decarboxylation of d-malate-based substrates with various specificities. Here, we show that, in addition to its natural function affording bacterial growth on d-malate as a carbon source, the d-malate dehydrogenase of Escherichia coli (EcDmlA) naturally expressed from its chromosomal gene is capable of complementing leucine auxotrophy in a leuB strain lacking the paralogous isopropylmalate dehydrogenase enzyme. To our knowledge, this is the first example of an enzyme that contributes with a physiologically relevant level of activity to two distinct pathways of the core metabolism while expressed from its chromosomal locus. EcDmlA features relatively high catalytic activity on at least three different substrates (l(+)-tartrate, d-malate, and 3-isopropylmalate). Because of these properties both in vivo and in vitro, EcDmlA may be defined as a generalist enzyme. Phylogenetic analysis highlights an ancient origin of DmlA, indicating that the enzyme has maintained its generalist character throughout evolution. We discuss the implication of these findings for protein evolution.  相似文献   

6.
Formation of the peptidoglycan stem pentapeptide requires the insertion of both l and d amino acids by the ATP-dependent ligase enzymes MurC, -D, -E, and -F. The stereochemical control of the third position amino acid in the pentapeptide is crucial to maintain the fidelity of later biosynthetic steps contributing to cell morphology, antibiotic resistance, and pathogenesis. Here we determined the x-ray crystal structure of Staphylococcus aureus MurE UDP-N-acetylmuramoyl-l-alanyl-d-glutamate:meso-2,6-diaminopimelate ligase (MurE) (E.C. 6.3.2.7) at 1.8 Å resolution in the presence of ADP and the reaction product, UDP-MurNAc-l-Ala-γ-d-Glu-l-Lys. This structure provides for the first time a molecular understanding of how this Gram-positive enzyme discriminates between l-lysine and d,l-diaminopimelic acid, the predominant amino acid that replaces l-lysine in Gram-negative peptidoglycan. Despite the presence of a consensus sequence previously implicated in the selection of the third position residue in the stem pentapeptide in S. aureus MurE, the structure shows that only part of this sequence is involved in the selection of l-lysine. Instead, other parts of the protein contribute substrate-selecting residues, resulting in a lysine-binding pocket based on charge characteristics. Despite the absolute specificity for l-lysine, S. aureus MurE binds this substrate relatively poorly. In vivo analysis and metabolomic data reveal that this is compensated for by high cytoplasmic l-lysine concentrations. Therefore, both metabolic and structural constraints maintain the structural integrity of the staphylococcal peptidoglycan. This study provides a novel focus for S. aureus-directed antimicrobials based on dual targeting of essential amino acid biogenesis and its linkage to cell wall assembly.  相似文献   

7.
The mechanism of hexose transport into plasma membrane vesicles isolated from mature sugarbeet leaves (Beta vulgaris L.) was investigated. The initial rate of glucose uptake into the vesicles was stimulated approximately fivefold by imposing a transmembrane pH gradient (ΔpH), alkaline inside, and approximately fourfold by a negative membrane potential (ΔΨ), generated as a K+-diffusion potential, negative inside. The -fold stimulation was directly related to the relative ΔpH or ΔΨ gradient imposed, which were determined by the uptake of acetate or tetraphenylphosphonium, respectively. ΔΨ- and ΔpH-dependent glucose uptake showed saturation kinetics with a Km of 286 micromolar for glucose. Other hexose molecules (e.g. 2-deoxy-d-glucose, 3-O-methyl-d-glucose, and d-mannose) were also accumulated into plasma membrane vesicles in a ΔpH-dependent manner. Inhibition constants of a number of compounds for glucose uptake were determined. Effective inhibitors of glucose uptake included: 3-O-methyl-d-glucose, 5-thio-d-glucose, d-fructose, d-galactose, and d-mannose, but not 1-O-methyl-d-glucose, d- and l-xylose, l-glucose, d-ribose, and l-sorbose. Under all conditions of proton motive force magnitude and glucose and sucrose concentration tested, there was no effect of sucrose on glucose uptake. Thus, hexose transport on the sugarbeet leaf plasma membrane was by a H+-hexose symporter, and the carrier and possibly the energy source were not shared by the plasma membrane H+-sucrose symporter.  相似文献   

8.
Ruminococcus albus is a typical ruminal bacterium digesting cellulose and hemicellulose. Cellobiose 2-epimerase (CE; EC 5.1.3.11), which converts cellobiose to 4-O-β-d-glucosyl-d-mannose, is a particularly unique enzyme in R. albus, but its physiological function is unclear. Recently, a new metabolic pathway of mannan involving CE was postulated for another CE-producing bacterium, Bacteroides fragilis. In this pathway, β-1,4-mannobiose is epimerized to 4-O-β-d-mannosyl-d-glucose (Man-Glc) by CE, and Man-Glc is phosphorolyzed to α-d-mannosyl 1-phosphate (Man1P) and d-glucose by Man-Glc phosphorylase (MP; EC 2.4.1.281). Ruminococcus albus NE1 showed intracellular MP activity, and two MP isozymes, RaMP1 and RaMP2, were obtained from the cell-free extract. These enzymes were highly specific for the mannosyl residue at the non-reducing end of the substrate and catalyzed the phosphorolysis and synthesis of Man-Glc through a sequential Bi Bi mechanism. In a synthetic reaction, RaMP1 showed high activity only toward d-glucose and 6-deoxy-d-glucose in the presence of Man1P, whereas RaMP2 showed acceptor specificity significantly different from RaMP1. RaMP2 acted on d-glucose derivatives at the C2- and C3-positions, including deoxy- and deoxyfluoro-analogues and epimers, but not on those substituted at the C6-position. Furthermore, RaMP2 had high synthetic activity toward the following oligosaccharides: β-linked glucobioses, maltose, N,N′-diacetylchitobiose, and β-1,4-mannooligosaccharides. Particularly, β-1,4-mannooligosaccharides served as significantly better acceptor substrates for RaMP2 than d-glucose. In the phosphorolytic reactions, RaMP2 had weak activity toward β-1,4-mannobiose but efficiently degraded β-1,4-mannooligosaccharides longer than β-1,4-mannobiose. Consequently, RaMP2 is thought to catalyze the phosphorolysis of β-1,4-mannooligosaccharides longer than β-1,4-mannobiose to produce Man1P and β-1,4-mannobiose.  相似文献   

9.
d-Serine is a physiological co-agonist of the N-methyl-d-aspartate receptor. It regulates excitatory neurotransmission, which is important for higher brain functions in vertebrates. In mammalian brains, d-amino acid oxidase degrades d-serine. However, we have found recently that in chicken brains the oxidase is not expressed and instead a d-serine dehydratase degrades d-serine. The primary structure of the enzyme shows significant similarities to those of metal-activated d-threonine aldolases, which are fold-type III pyridoxal 5′-phosphate (PLP)-dependent enzymes, suggesting that it is a novel class of d-serine dehydratase. In the present study, we characterized the chicken enzyme biochemically and also by x-ray crystallography. The enzyme activity on d-serine decreased 20-fold by EDTA treatment and recovered nearly completely by the addition of Zn2+. None of the reaction products that would be expected from side reactions of the PLP-d-serine Schiff base were detected during the >6000 catalytic cycles of dehydration, indicating high reaction specificity. We have determined the first crystal structure of the d-serine dehydratase at 1.9 Å resolution. In the active site pocket, a zinc ion that coordinates His347 and Cys349 is located near the PLP-Lys45 Schiff base. A theoretical model of the enzyme-d-serine complex suggested that the hydroxyl group of d-serine directly coordinates the zinc ion, and that the ϵ-NH2 group of Lys45 is a short distance from the substrate Cα atom. The α-proton abstraction from d-serine by Lys45 and the elimination of the hydroxyl group seem to occur with the assistance of the zinc ion, resulting in the strict reaction specificity.  相似文献   

10.
Vancomycin-resistant enterococci acquire high-level resistance to glycopeptide antibiotics through the synthesis of peptidoglycan terminating in d-alanyl-d-lactate. A key enzyme in this process is a d-alanyl-d-alanine ligase homologue, VanA or VanB, which preferentially catalyzes the synthesis of the depsipeptide d-alanyl-d-lactate. We report the overexpression, purification, and enzymatic characterization of DdlN, a VanA and VanB homologue encoded by a gene of the vancomycin-producing organism Amycolatopsis orientalis C329.2. Evaluation of kinetic parameters for the synthesis of peptides and depsipeptides revealed a close relationship between VanA and DdlN in that depsipeptide formation was kinetically preferred at physiologic pH; however, the DdlN enzyme demonstrated a narrower substrate specificity and commensurately increased affinity for d-lactate in the C-terminal position over VanA. The results of these functional experiments also reinforce the results of previous studies that demonstrated that glycopeptide resistance enzymes from glycopeptide-producing bacteria are potential sources of resistance enzymes in clinically relevant bacteria.The origin of antibiotic resistance determinants is of significant interest for several reasons, including the prediction of the emergence and spread of resistance patterns, the design of new antimicrobial agents, and the identification of potential reservoirs for resistance elements. Antibiotic resistance can occur either through spontaneous mutation in the target or by the acquisition of external genetic elements such as plasmids or transposons which carry resistance genes (7). The origins of these acquired genes are varied, but it has long been recognized that potential reservoirs are antibiotic-producing organisms which naturally harbor antibiotic resistance genes to protect themselves from the actions of toxic compounds (6).High-level resistance to glycopeptide antibiotics such as vancomycin and teicoplanin in vancomycin-resistant enterococci (VRE) is conferred by the presence of three genes, vanH, vanA (or vanB), and vanX, which, along with auxiliary genes necessary for inducible gene expression, are found on transposons integrated into plasmids or the bacterial genome (1, 20). These three genes are essential to resistance and serve to change the C-terminal peptide portion of the peptidoglycan layer from d-alanyl-d-alanine (d-Ala-d-Ala) to d-alanyl-d-lactate (d-Ala-d-Lac). This change results in the loss of a critical hydrogen bond between vancomycin and the d-Ala-d-Ala terminus and in a 1,000-fold decrease in binding affinity between the antibiotic and the peptidoglycan layer, which is the basis for the bactericidal action of this class of compounds (5). The vanH gene encodes a d-lactate dehydrogenase which provides the requisite d-Lac (3, 5), while the vanX gene encodes a highly specific dd-peptidase which cleaves only d-Ala-d-Ala produced endogenously while leaving d-Ala-d-Lac intact (19, 21). The final gene, vanA or vanB, encodes an ATP-dependent d-Ala-d-Lac ligase (4, 8, 10). This enzyme has sequence homology with the chromosomal d-Ala-d-Ala ligases, which are essential for peptidoglycan synthesis but which generally lack the ability to synthesize d-Ala-d-Lac (9).We have recently cloned vanH, vanA, and vanX homologues from two glycopeptide antibiotic-synthesizing organisms: Amycolatopsis orientalis C329.2, which produces vancomycin, and Streptomyces toyocaensis NRRL 15009, which produces A47934 (14). In addition, the vanH-vanA-vanX gene cluster was identified in several other glycopeptide producers. We have also demonstrated that the VanA homologue from S. toyocaensis NRRL 15009 can synthesize d-Ala-d-Lac in vitro and in the glycopeptide-sensitive host Streptomyces lividans (15, 16). We now report the expression of the A. orientalis C329.2 VanA homologue DdlN in Escherichia coli, its purification, and its enzymatic characterization. These data reinforce the striking similarity between vancomycin resistance elements in VRE and glycopeptide-producing organisms and support the possibility of a common origin for these enzymes.

Expression, purification, and specificity of DdlN.

DdlN was overexpressed in E. coli under the control of the bacteriophage T7 promoter. The construct gave good yields of highly purified enzyme following a four-step purification procedure (Table (Table1;1; Fig. Fig.1).1). Like other dd-ligases, DdlN behaved like a dimer in solution (not shown).

TABLE 1

Purification of DdlN from E. coli BL21 (DE3)/pETDdlN
SampleProtein (mg)Activity (nmol/min)Sp act (nmol/ min/mg)Recovery (%)Purification (fold)
Lysate1248436.82100
Ammonium sulfate (20–50% saturation)67.678011.5921.7
Sephacryl S20011.682571.49811
Q Sepharose2.87422658839
Phenyl Superose0.429974835110
Open in a separate windowOpen in a separate windowFIG. 1Purification of DdlN from E. coli BL21 (DE3)/pETDdlN. Proteins were separated on an SDS–11% polyacrylamide gel and stained with Coomassie blue. Lane 1, molecular mass markers (masses are noted at the left in kilodaltons); lane 2, whole-cell lysate; lane 3, ammonium sulfate fraction (20 to 50% saturation); lane 4, Sephacryl S200; lane 5, Q Sepharose; lane 6, phenyl Superose.The amino acid substrate specificity of DdlN was assessed by incubation of 14C-d-Ala with all 20 common amino acids in the d configuration. Purified DdlN catalyzed the synthesis of d-Ala-d-Ala in addition to that of several other mixed dipeptides, including d-Ala-d-Met and d-Ala-d-Phe (Fig. (Fig.2).2). Thus, DdlN exhibits a substrate specificity which is similar to that of VanA (4), with the capacity to synthesize not only d-Ala-d-Ala but also mixed dipeptides with bulky side chains in the C-terminal position.Open in a separate windowFIG. 2Substrate specificity of DdlN. Autoradiogram from thin-layer chromatography analysis of DdlN substrate specificity. All reaction mixtures contained 2.5 mM d-Ala and 1 mM ATP, and the radiolabel was 14C-d-Ala, except where noted. Lane 1, d-Ala; lane 2, d-Lac with 14C-d-Lac label; lane 3, d,l-methionine; lane 4, dl-phenylalanine; lane 5, d-Hbut; lane 6, d-hydroxyvalerate. Letters indicate the following: A, d-Ala-d-Lac; B, d-Lac; C, d-Ala-d-Met; D, d-Ala-d-Phe; E, d-Ala-d-Hbut; F, d-Ala-d-hydroxyvalerate.Importantly, DdlN is a depsipeptide synthase with the ability to synthesize d-Ala-d-Lac, d-Ala-d-hydroxybutyrate (Hbut), and d-Ala-d-hydroxyvalerate (Fig. (Fig.2).2). However, unlike VanA (5), d-hydroxycaproate and d-phenyllactate are not substrates (not shown). Thus, DdlN is a broad-spectrum d-Ala-d-X ligase with depsipeptide synthase activity.

Characterization of d-Ala-d-X ligase activity.

Following the initial assessment of the specificity of the enzyme, several substrates were selected for quantitative analysis by evaluation of their steady-state kinetic parameters (Table (Table2).2). DdlN has two amino acid (or hydroxy acid) Km values. Steady-state kinetic plots indicated that, like other dd-ligases, the N-terminal Km (Km1) was significantly lower (higher specificity) than the C-terminal Km (Km2). Since the former value is expected to be independent of the C-terminal substrate, only Km2 values were determined and are reported here.

TABLE 2

Characterization of steady-state parameters of DdlN and VanA
LigaseSubstrateKm2 (mM)kcat (min−1)kcat/Km2 (M−1 s−1)
DdlNd-Ala21 ± 2229 ± 71.8 × 102
d-Lac0.4 ± 0.0555 ± 12.3 × 103
d-Hbut2.5 ± 0.332 ± 22.1 × 102
ATPa1.2 ± 0.271 ± 50.98 × 102
DdlMbd-Ala166 ± 27
d-Lac1.08 ± 0.10
VanAcd-Ala382951.3 × 102
d-Lac7.1942.2 × 102
d-Hbut0.601083.0 × 103
Open in a separate windowa Determined in the presence of 10 mM d-Lac. b Data from reference 16c Data from reference 5. DdlN showed good d-Ala-d-Ala ligase activity but with a very high and physiologically questionable Km2 (21 mM). On the other hand, d-Ala-d-Lac synthesis was excellent, with a 4-fold decrease in kcat, compared to d-Ala-d-Ala synthesis, which was offset by a 52-fold drop in Km that resulted in a >12-fold increase in specificity (kcat/Km2). d-Hbut was also a good substrate, with a kcat/Km2 comparable to that of d-Ala.Steady-state kinetic parameters for d-Ala-d-X formation showed trends similar to those found with both VanA and DdlN. For example, the kcat values between VanA and DdlN were virtually the same for most substrates. There were significant differences, however. For instance, while the Km2 values for d-Ala were very high for all three enzymes, DdlN does have greater affinity for d-Ala, with a 1.8- and 7.9-fold lower Km2 than those of VanA and DdlM, respectively. Additionally, the Km2 for d-Lac was 17.8- and 2.7-fold lower than those for VanA and DdlM. Thus, DdlN has a more restrictive specificity for the C-terminal residue than VanA, which is compensated for by a higher affinity for the critical substrate d-Lac.

pH dependence of peptide versus that of depsipeptide synthesis activity.

The partitioning of the syntheses of d-Ala-d-Ala and d-Ala-d-Hbut in VanA and other depsipeptide-competent dd-ligases has been shown to be pH dependent (17). Determination of the pH dependence of DdlN in synthesizing peptide versus depsipeptide (Fig. (Fig.3)3) directly paralleled the results obtained with VanA in similar experiments. At lower pHs (<7), d-Ala-d-Hbut synthesis predominates and is exclusive at a pH of <6 (Fig. (Fig.3).3). At pH 7.5, levels of synthesis of d-Ala-d-Hbut and d-Ala-d-Ala are relatively equal, while at a pH greater than 8, the capacity to synthesize peptide overtakes the capacity to synthesize depsipeptide, although the latter is never abolished. Open in a separate windowFIG. 3pH dependence of partitioning of the syntheses of peptide and depsipeptide by DdlN. (A) Autoradiogram of a thin-layer chromatography separation of the products of reaction mixtures containing 14C-D-Ala, unlabeled D-Ala, and d-Hbut. (B) Quantification of reaction products following phosphorimage analysis. Filled circles, D-Ala-d-Hbut; open circles, D-Ala-D-Ala.The partitioning of the formation of peptide versus depsipeptide as a function of pH by DdlM is comparable to that by VanA and depsipeptide-competent mutants of DdlB (17), which show essentially exclusively depsipeptide formation at lower pHs and increasing peptide formation as the pH increases. This implies a potential role for the protonated ammonium group of d-Ala2 in second-substrate recognition and suggests a mechanism for the discrimination between d-Ala and d-Lac at physiologic pH. The structural basis for this distinction remains obscure for DdlB and VanA or DdlN.

Concluding remarks.

Resistance to vancomycin and other glycopeptides is mediated through the synthesis of a peptidoglycan which does not terminate with the canonical d-Ala-d-Ala dipeptide. Thus, enterococci which exhibit the VanC phenotype, which consists of low-level, noninducible resistance to vancomycin only, have peptidoglycan terminating in d-Ala-d-Ser (19). On the other hand, bacteria which are constitutively resistant to high concentrations of glycopeptides, such as lactic acid bacteria and VRE exhibiting the VanA or VanB phenotype (high-level inducible resistance to vancomycin), incorporate the depsipeptide d-Ala-d-Lac into their cell walls (2, 12, 13). The enzymes responsible for the intracellular synthesis of d-Ala-d-Lac not surprisingly have significant amino acid sequence similarity with d-Ala-d-Ala ligases, which are responsible for d-Ala-d-Ala synthesis in all bacteria with a cell wall (9).The d-Ala-d-Lac synthases can be subdivided into two groups based on sequence homology: those found in the constitutively resistant lactic acid bacteria and those found in glycopeptide-producing organisms and VanA or VanB VRE (9, 14). The former have more similarity with exclusive d-Ala-d-Ala ligases. Indeed, single point mutations in d-Ala-d-Ala ligases which yield sequences more similar to those of lactic acid bacterium d-Ala-d-Lac ligases are sufficient to induce significant depsipeptide synthase activity in these enzymes (17). Similarly, mutational studies of the d-Ala-d-Lac ligase from Leuconostoc mesenteroides have demonstrated that the converse also holds (18). On the other hand, the molecular basis for depsipeptide synthesis by the VanA or VanB ligases is unknown, in large part due to the lack of protein structural information on which to base mutational studies, unlike the situation with d-Ala-d-Ala ligases, where the E. coli DdlB structure serves as a template for mechanistic research (11).Significantly, a major difference in the VanA or VanB ligases and other dd-ligases lies in the amino acid sequence of the ω-loop region, which closes off the active site of DdlB (11) and has been shown to contribute amino acid residues with the capacity to control the syntheses of d-Ala-d-Ala and d-Ala-d-Lac, notably, Tyr216 (17, 18). Until recently, the VanA and VanB ligases were exceptional in amino acid structure and had no known homologues. The sequencing of resistance genes from glycopeptide-producing bacteria has uncovered enzymes with >60% homology to VanA or VanB and which are virtually superimposable in the critical ω-loop region (14, 15). One of these, DdlM from S. toyocaensis NRRL 15009, has been shown to have d-Ala-d-Lac ligase ability (15, 16), although no rigorous analysis of this activity has been performed. The results presented here demonstrate that DdlN from the vancomycin producer A. orientalis C329.2 not only is a d-Ala-d-Lac ligase but also has significant functional homology with VanA. It is not known at present if, like S. toyocaensis NRRL 15009 (16), A. orientalis C329.2 also possess a d-Ala-d-Ala-exclusive ligase, though the presence of a vanX gene (14) suggests that it may.These studies demonstrate that DdlN cloned from a vancomycin-producing bacterium is a d-Ala-d-Lac ligase which has not only amino acid sequence homology with the dd-ligases from VRE but also functional homology. Thus, VanA, VanB, DdlN, and DdlM have likely evolved from similar origins. The fact that a vanH-vanA-vanX gene cluster can be found in other glycopeptide producers as well (14) suggests that the genes now found in VRE may have originated in glycopeptide-producing bacteria. Our finding that overexpressed, purified, DdlN shows many enzymatic characteristics similar (though not identical) to those of VanA suggests that the genes from glycopeptide-producing bacteria can be important in elucidating biochemical and protein structural aspects of the VRE proteins.  相似文献   

11.
Streptococcus intermedius is a known human pathogen and belongs to the anginosus group (S. anginosus, S. intermedius, and S. constellatus) of streptococci (AGS). We found a large open reading frame (6,708 bp) in the lac operon, and bioinformatic analysis suggested that this gene encodes a novel glycosidase that can exhibit β-d-galactosidase and N-acetyl-β-d-hexosaminidase activities. We, therefore, named this protein “multisubstrate glycosidase A” (MsgA). To test whether MsgA has these glycosidase activities, the msgA gene was disrupted in S. intermedius. The msgA-deficient mutant no longer showed cell- and supernatant-associated β-d-galactosidase, β-d-fucosidase, N-acetyl-β-d-glucosaminidase, and N-acetyl-β-d-galactosaminidase activities, and all phenotypes were complemented in trans with a recombinant plasmid carrying msgA. Purified MsgA had all four of these glycosidase activities and exhibited the lowest Km with 4-methylumbelliferyl-linked N-acetyl-β-d-glucosaminide and the highest kcat with 4-methylumbelliferyl-linked β-d-galactopyranoside. In addition, the purified LacZ domain of MsgA had β-d-galactosidase and β-d-fucosidase activities, and the GH20 domain exhibited both N-acetyl-β-d-glucosaminidase and N-acetyl-β-d-galactosaminidase activities. The β-d-galactosidase and β-d-fucosidase activities of MsgA are thermolabile, and the optimal temperature of the reaction was 40°C, whereas almost all enzymatic activities disappeared at 49°C. The optimal temperatures for the N-acetyl-β-d-glucosaminidase and N-acetyl-β-d-galactosaminidase activities were 58 and 55°C, respectively. The requirement of sialidase treatment to remove sialic acid residues of the glycan branch end for glycan degradation by MsgA on human α1-antitrypsin indicates that MsgA has exoglycosidase activities. MsgA and sialidase might have an important function in the production and utilization of monosaccharides from oligosaccharides, such as glycans for survival in a normal habitat and for pathogenicity of S. intermedius.  相似文献   

12.
Previously, we successfully cloned a d-cycloserine (d-CS) biosynthetic gene cluster consisting of 10 open reading frames (designated dcsA to dcsJ) from d-CS-producing Streptomyces lavendulae ATCC 11924. In this study, we put four d-CS biosynthetic genes (dcsC, dcsD, dcsE, and dcsG) in tandem under the control of the T7 promoter in an Escherichia coli host. SDS-PAGE analysis demonstrated that the 4 gene products were simultaneously expressed in host cells. When l-serine and hydroxyurea (HU), the precursors of d-CS, were incubated together with the E. coli resting cell suspension, the cells produced significant amounts of d-CS (350 ± 20 μM). To increase the productivity of d-CS, the dcsJ gene, which might be responsible for the d-CS excretion, was connected downstream of the four genes. The E. coli resting cells harboring the five genes produced d-CS at 660 ± 31 μM. The dcsD gene product, DcsD, forms O-ureido-l-serine from O-acetyl-l-serine (OAS) and HU, which are intermediates in d-CS biosynthesis. DcsD also catalyzes the formation of l-cysteine from OAS and H2S. To repress the side catalytic activity of DcsD, the E. coli chromosomal cysJ and cysK genes, encoding the sulfite reductase α subunit and OAS sulfhydrylase, respectively, were disrupted. When resting cells of the double-knockout mutant harboring the four d-CS biosynthetic genes, together with dcsJ, were incubated with l-serine and HU, the d-CS production was 980 ± 57 μM, which is comparable to that of d-CS-producing S. lavendulae ATCC 11924 (930 ± 36 μM).  相似文献   

13.
The analysis of the urine contents can be informative of physiological homoeostasis, and it has been speculated that the levels of urinary d-serine (d-ser) could inform about neurological and renal disorders. By analysing the levels of urinary d-ser using a d-ser dehydratase (DSD) enzyme, Ito et al. (Biosci. Rep.(2021) 41, BSR20210260) have described abundant levels of l-erythro-β-hydroxyasparagine (l-β-EHAsn), a non-proteogenic amino acid which is also a newly described substrate for DSD. The data presented support the endogenous production l-β-EHAsn, with its concentration significantly correlating with the concentration of creatinine in urine. Taken together, these results could raise speculations that l-β-EHAsn might have unexplored important biological roles. It has been demonstrated that l-β-EHAsn also inhibits serine racemase with Ki values (40 μM) similar to its concentration in urine (50 μM). Given that serine racemase is the enzyme involved in the synthesis of d-ser, and l-β-EHAsn is also a substrate for DSD, further investigations could verify if this amino acid would be involved in the metabolic regulation of pathways involving d-ser.  相似文献   

14.
A gene cluster involved in N-glycan metabolism was identified in the genome of Bacteroides thetaiotaomicron VPI-5482. This gene cluster encodes a major facilitator superfamily transporter, a starch utilization system-like transporter consisting of a TonB-dependent oligosaccharide transporter and an outer membrane lipoprotein, four glycoside hydrolases (α-mannosidase, β-N-acetylhexosaminidase, exo-α-sialidase, and endo-β-N-acetylglucosaminidase), and a phosphorylase (BT1033) with unknown function. It was demonstrated that BT1033 catalyzed the reversible phosphorolysis of β-1,4-d-mannosyl-N-acetyl-d-glucosamine in a typical sequential Bi Bi mechanism. These results indicate that BT1033 plays a crucial role as a key enzyme in the N-glycan catabolism where β-1,4-d-mannosyl-N-acetyl-d-glucosamine is liberated from N-glycans by sequential glycoside hydrolase-catalyzed reactions, transported into the cell, and intracellularly converted into α-d-mannose 1-phosphate and N-acetyl-d-glucosamine. In addition, intestinal anaerobic bacteria such as Bacteroides fragilis, Bacteroides helcogenes, Bacteroides salanitronis, Bacteroides vulgatus, Prevotella denticola, Prevotella dentalis, Prevotella melaninogenica, Parabacteroides distasonis, and Alistipes finegoldii were also suggested to possess the similar metabolic pathway for N-glycans. A notable feature of the new metabolic pathway for N-glycans is the more efficient use of ATP-stored energy, in comparison with the conventional pathway where β-mannosidase and ATP-dependent hexokinase participate, because it is possible to directly phosphorylate the d-mannose residue of β-1,4-d-mannosyl-N-acetyl-d-glucosamine to enter glycolysis. This is the first report of a metabolic pathway for N-glycans that includes a phosphorylase. We propose 4-O-β-d-mannopyranosyl-N-acetyl-d-glucosamine:phosphate α-d-mannosyltransferase as the systematic name and β-1,4-d-mannosyl-N-acetyl-d-glucosamine phosphorylase as the short name for BT1033.  相似文献   

15.
Here we performed structural and biochemical analyses on the TK2285 gene product, an uncharacterized protein annotated as a member of the ribokinase family, from the hyperthermophilic archaeon Thermococcus kodakarensis. The three-dimensional structure of the TK2285 protein resembled those of previously characterized members of the ribokinase family including ribokinase, adenosine kinase, and phosphofructokinase. Conserved residues characteristic of this protein family were located in a cleft of the TK2285 protein as in other members whose structures have been determined. We thus examined the kinase activity of the TK2285 protein toward various sugars recognized by well characterized ribokinase family members. Although activity with sugar phosphates and nucleosides was not detected, kinase activity was observed toward d-allose, d-lyxose, d-tagatose, d-talose, d-xylose, and d-xylulose. Kinetic analyses with the six sugar substrates revealed high Km values, suggesting that they were not the true physiological substrates. By examining activity toward amino sugars, sugar alcohols, and disaccharides, we found that the TK2285 protein exhibited prominent kinase activity toward myo-inositol. Kinetic analyses with myo-inositol revealed a greater kcat and much lower Km value than those obtained with the monosaccharides, resulting in over a 2,000-fold increase in kcat/Km values. TK2285 homologs are distributed among members of Thermococcales, and in most species, the gene is positioned close to a myo-inositol monophosphate synthase gene. Our results suggest the presence of a novel subfamily of the ribokinase family whose members are present in Archaea and recognize myo-inositol as a substrate.  相似文献   

16.
1. The kinetic properties of the soluble and particulate hexokinases from rat heart have been investigated. 2. For both forms of the enzyme, the Km for glucose was 45μm and the Km for ATP 0·5mm. Glucose 6-phosphate was a non-competitive inhibitor with respect to glucose (Ki 0·16mm for the soluble and 0·33mm for the particulate enzyme) and a mixed inhibitor with respect to ATP (Ki 80μm for the soluble and 40μm for the particulate enzyme). ADP and AMP were competitive inhibitors with respect to ATP (Ki for ADP was 0·68mm for the soluble and 0·60mm for the particulate enzyme; Ki for AMP was 0·37mm for the soluble and 0·16mm for the particulate enzyme). Pi reversed glucose 6-phosphate inhibition with both forms at 10mm but not at 2mm, with glucose 6-phosphate concentrations of 0·3mm or less for the soluble and 1mm or less for the particulate enzyme. 3. The total activity of hexokinase in normal hearts and in hearts from alloxan-diabetic rats was 21·5μmoles of glucose phosphorylated/min./g. dry wt. of ventricle at 25°. The temperature coefficient Q10 between 22° and 38·5° was 1·93; the ratio of the soluble to the particulate enzyme was 3:7. 4. The kinetic data have been used to predict rates of glucose phosphorylation in the perfused heart at saturating concentrations of glucose from measured concentrations of ATP, glucose 6-phosphate, ADP and AMP. These have been compared with the rates of glucose phosphorylation measured with precision in a small-volume recirculation perfusion apparatus, which is described. The correlation between predicted and measured rates was highly significant and their ratio was 1·07. 5. These findings are consistent with the control of glucose phosphorylation in the perfused heart by glucose 6-phosphate concentration, subject to certain assumptions that are discussed in detail.  相似文献   

17.
1. all-trans-Retinoic acid at concentrations greater than 10−7m stimulated the incorporation of d-[3H]glucosamine into 8m-urea/5% (w/v) sodium dodecyl sulphate extracts of 1m-CaCl2-separated epidermis from pig ear skin slices cultured for 18h. The incorporation of 35SO42−, l-[14C]fucose and U-14C-labelled l-amino acids was not significantly affected. 2. Electrophoresis of the solubilized epidermis showed increased incorporation of d-[3H]glucosamine into a high-molecular-weight glycosaminoglycan-containing peak when skin slices were cultured in the presence of 10−5m-all-trans-retinoic acid. The labelling of other epidermal components with d-[3H]glucosamine, 35SO42−, l-[14C]fucose and U-14C-labelled l-amino acids was not significantly affected by 10−5m-all-trans-retinoic acid. 3. Trypsinization dispersed the epidermal cells and released 75–85% of the total d-[3H]glucosamine-labelled material in the glycosaminoglycan peak. Thus most of this material was extracellular in both control and 10−5m-all-trans-retinoic acid-treated epidermis. 4. Increased labelling of extracellular epidermal glycosaminoglycans was also observed when human skin slices were treated with all-trans-retinoic acid, indicating a similar mechanism in both tissues. Increased labelling was also found when the epidermis was cultured in the absence of the dermis, suggesting a direct effect of all-trans-retinoic acid on the epidermis. 5. Increased incorporation of d-[3H]-glucosamine into extracellular epidermal glycosaminoglycans in 10−5m-all-trans-retinoic acid-treated skin slices was apparent after 4–8h in culture and continued up to 48h. all-trans-Retinoic acid (10−5m) did not affect the rate of degradation of this material in cultures `chased' with 5mm-unlabelled glucosamine after 4 or 18h. 6. Cellulose acetate electrophoresis at pH7.2 revealed that hyaluronic acid was the major labelled glycosaminoglycan (80–90%) in both control and 10−5m-all-trans-retinoic acid-treated epidermis. 7. The labelling of epidermal plasma membranes isolated from d-[3H]glucosamine-labelled skin slices by sucrose density gradient centrifugation was similar in control and 10−5m-all-trans-retinoic acid-treated tissue. 8. The results indicate that increased synthesis of mainly extracellular glycosaminoglycans (largely hyaluronic acid) may be the first response of the epidermis to excess all-trans-retinoic acid.  相似文献   

18.
1. Phosphomevalonate kinase and 5-pyrophosphomevalonate decarboxylase have been purified from the freeze-dried latex serum of the commercial rubber tree Hevea brasiliensis. 2. The phosphomevalonate kinase was acid- and heat-labile and required the presence of a thiol to maintain activity. 3. The 5-pyrophosphomevalonate decarboxylase was relatively acid-stable and more heat-stable than the phosphokinase. 4. Maximum activity of the phosphokinase was achieved at pH 7.2 with 0.2mm-5-phosphomevalonate (Km 0.042mm), 2.0mm-ATP (Km 0.19mm) and 8mm-Mg2+ at 40°C. The apparent activation energy was 14.8kcal/mol. 5. Maximum activity of 5-pyrophosphomevalonate decarboxylase was achieved at pH5.5–6.5 with 0.1mm-5-pyrophosphomevalonate (Km 0.004mm), 1.5mm-ATP (Km 0.12mm) and 2mm-Mg2+. The apparent activation energy was 13.7kcal/mol. The enzyme was somewhat sensitive to inhibition by its products, isopentenyl pyrophosphate and ADP.  相似文献   

19.
Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-l-alanine amidase, whereas Lc-Lys-2 is a γ-d-glutamyl-l-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with d-Ala4d-Asx-l-Lys3 in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting d-Ala4l-Ala-(l-Ala/l-Ser)-l-Lys3; moreover, they do not lyse the L. lactis mutant containing only the nonamidated d-Asp cross-bridge, i.e. d-Ala4d-Asp-l-Lys3. In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3→3 l-Lys3-d-Asn-l-Lys3 bridges replacing the wild-type 4→3 d-Ala4-d-Asn-l-Lys3 bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly d-Asn but not PG with only the nonamidated d-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the d-Asn interpeptide bridge of PG.  相似文献   

20.
An enzymatic method for obtaining d-xylulose 5-phosphate has been developed, based on the irreversible reaction catalyzed by transketolase: hydroxypyruvate + d-glyceraldehyde-3-phosphate → d-xylulose 5-phosphate. The preparations of sodium d-xylulose 5-phosphate, obtained using this approach, were 88% pure and contained no aldehyde admixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号