首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
3.
Notch receptors play a role in skeletal development and homeostasis, and Notch activation in undifferentiated and mature osteoblasts causes osteopenia. In contrast, Notch activation in osteocytes increases bone mass, but the mechanisms involved and exact functions of Notch are not known. In this study, Notch1 and -2 were inactivated preferentially in osteocytes by mating Notch1/2 conditional mice, where Notch alleles are flanked by loxP sequences, with transgenics expressing Cre directed by the Dmp1 (dentin matrix protein 1) promoter. Notch1/2 conditional null male and female mice exhibited an increase in trabecular bone volume due to an increase in osteoblasts and decrease in osteoclasts. In male null mice, this was followed by an increase in osteoclast number and normalization of bone volume. To activate Notch preferentially in osteocytes, Dmp1-Cre transgenics were crossed with RosaNotch mice, where a loxP-flanked STOP cassette is placed between the Rosa26 promoter and Notch1 intracellular domain sequences. Dmp1-Cre+/−;RosaNotch mice exhibited an increase in trabecular bone volume due to decreased bone resorption and an increase in cortical bone due to increased bone formation. Biomechanical and chemical properties were not affected. Osteoprotegerin mRNA was increased, sclerostin and dickkopf1 mRNA were decreased, and Wnt signaling was enhanced in Dmp1-Cre+/−;RosaNotch femurs. Botulinum toxin A-induced muscle paralysis caused pronounced osteopenia in control mice, but bone mass was preserved in mice harboring the Notch activation in osteocytes. In conclusion, Notch plays a unique role in osteocytes, up-regulates osteoprotegerin and Wnt signaling, and differentially regulates trabecular and cortical bone homeostasis.  相似文献   

4.
5.
6.
7.
8.
9.
10.
NFAT and Osterix cooperatively regulate bone formation   总被引:13,自引:0,他引:13  
  相似文献   

11.
12.
13.
14.
Arteriovenous differentiation is a key event during vascular development and hemodynamic forces play an important role. Arteriovenous gene expression is present before the onset of flow, however it remains plastic and flow can alter arteriovenous identity. Notch signaling is especially important in the genetic determination of arteriovenous identity. Nevertheless, the effect of the onset of circulation on Notch expression and signaling has not been studied. The aim of this study is therefore to investigate the interaction of Notch1 signaling and hemodynamic forces during early vascular development. We find that the onset of Notch1 expression coincides with the onset of flow, and that expression is pan-endothelial at the onset of circulation in mouse embryos and only becomes arterial-specific after remodeling has occurred. When we ablate flow in the early embryo, endothelial cells fail to express Notch1. We show that low and disturbed flow patterns upregulate Notch1 expression in endothelial cells in vitro, but that higher shear stress levels do not (≥10 dynes/cm2). Using siRNA, we knocked down Notch1 to investigate the role of Notch1 in mechanotransduction. When we applied shear stress levels similar to those found in embryonic arteries, we found an upregulation of Klf2, Dll1, Dll4, Jag1, Hey1, Nrp1 and CoupTFII but that only Dll4, Hey1, Nrp1 and EphB4 required Notch1 for flow-induced expression. Our results therefore indicate that Notch1 can modulate mechanotransduction but is not a critical mediator of the process since many genes mechanotransduce normally in the absence of Notch1, including genes involved in arteriovenous differentiation.  相似文献   

15.
16.
17.
Notch receptors are expressed in neurons and glia in the adult nervous system, but why this expression persists is not well-understood. Here we examine the role of the Notch pathway in the postnatal mouse main olfactory system, and show evidence consistent with a model where Notch2 is required for maintaining sustentacular cell function. In the absence of Notch2, the laminar nature of these glial-like cells is disrupted. Hes1, Hey1, and Six1, which are downstream effectors of the Notch pathway, are down-regulated, and cytochrome P450 and Glutathione S-transferase (GST) expression by sustentacular cells is reduced. Functional levels of GST activity are also reduced. These disruptions are associated with increased olfactory sensory neuron degeneration. Surprisingly, expression of Notch3 is also down-regulated. This suggests the existence of a feedback loop where expression of Notch3 is initially independent of Notch2, but requires Notch2 for maintained expression. While the Notch pathway has previously been shown to be important for promoting gliogenesis during development, this is the first demonstration that the persistent expression of Notch receptors is required for maintaining glial function in adult.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号