首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 203 毫秒
1.
2.
3.
Rap1p binds to sites embedded within the Saccharomyces cerevisiae telomeric TG1-3 tract. Previous studies have led to the hypothesis that Rap1p may recruit Sir3p and Sir3p-associating factors to the telomere. To test this, we tethered Sir3p adjacent to the telomere via LexA binding sites in the rap1-17 mutant that truncates the Rap1p C-terminal 165 amino acids thought to contain sites for Sir3p association. Tethering of LexA-Sir3p adjacent to the telomere is sufficient to restore telomeric silencing, indicating that Sir3p can nucleate silencing at the telomere. Tethering of LexA-Sir3p or the LexA-Sir3p(N2O5) gain-of-function protein to a telomeric LexA site hyperrepresses an adjacent ADE2 gene in wild-type cells. Hence, Sir3p recruitment to the telomere is limiting in telomeric silencing. In addition, LexA-Sir3p(N2O5) hyperrepresses telomeric silencing when tethered to a subtelomeric site 3.6 kb from the telomeric tract. This hyperrepression is dependent on the C terminus of Rap1p, suggesting that subtelomeric LexA-Sir3p(N205) can interact with Rap1p-associated factors at the telomere. We also demonstrate that LexA-Sir3p or LexA-Sir3p(N205) tethered in cis with a short tract of telomeric TG1-3 sequences is sufficient to confer silencing at an internal chromosomal position. Internal silencing is enhanced in rap1-17 strains. We propose that sequestration of silencing factors at the telomere limits the efficiency of internal silencing.  相似文献   

4.
The expression of genes residing near telomeres is attenuated through telomere position-effect variegation (TPEV). By using a URA3 reporter located at TEL-VII-L of Saccharomyces cerevisiae, it was proposed that the disruptor of telomeric silencing-1 (Dot1) regulates TPEV by catalyzing H3K79 methylation. URA3 reporter assays also indicated that H3K79 methylation is required for HM silencing. Surprisingly, a genome-wide expression analysis of H3K79 methylation-defective mutants identified only a few telomeric genes, such as COS12 at TEL-VII-L, to be subject to H3K79 methylation-dependent natural silencing. Consistently, loss of Dot1 did not globally alter Sir2 or Sir3 occupancy in subtelomeric regions, but only led to some telomere-specific changes. Furthermore, H3K79 methylation by Dot1 did not play a role in the maintenance of natural HML silencing. Therefore, commonly used URA3 reporter assays may not report on natural PEV, and therefore, studies concerning the epigenetic mechanism of silencing in yeast should also employ assays reporting on natural gene expression patterns.  相似文献   

5.
The Saccharomyces cerevisiae gene PPR1 encodes a positive regulator of the expression of the two unlinked structural genes URA1 and URA3. The gene has been mapped to a position 6.5 cM from the centromere of chromosome XII. Uninducible alleles have been selected and used to establish a meiotic map. Suppressible alleles have been identified. The sequencing of a suppressible allele confirms the nonsense nature of the mutation as well as the reading frame deduced from the nucleotide sequence. No evidence of intracistronic complementation was found, and enzymatic analysis of leaky mutants did not reveal any mutations dissociating regulation of URA1 from that of URA3. Three in vitro-constructed deletions of PPR1 have been integrated at the chromosomal locus, giving strains with a completely negative phenotype. These deletion mutants display the wild-type basal level of URA1 and URA3 expression and show a semi-dominant phenotype in heteroallelic ppr1+/ppr1-delta diploids. Amplifying PPR1 by introduction into yeast on a multicopy vector increases the induction factor of URA1 and URA3 expression. These results show that the extent of regulation of the two structural genes is dependent on the concentration of the active PPR1 protein.  相似文献   

6.
By screening lambda gt11 libraries with a radiolabeled (TG1-3)n oligonucleotide, two Saccharomyces cerevisiae genes were identified that encode polypeptides that recognize the single-stranded telomeric repeat sequence (TG1-3)n. The first gene, NSR1, a previously identified gene, encodes a protein involved in ribosomal RNA maturation and possibly in transport of proteins into the nucleus. The second gene, GBP2 (G-strand Binding Protein), is an anonymous open reading frame from chromosome III. These two genes contain RNA recognition motifs (RRMs) that are found in proteins that interact with RNA. Both Nsr1p and Gbp2p bind specifically to yeast single strand (TG1-3)n DNA in vitro. To test whether these two proteins associate with telomeres in vivo, strains were constructed in which one or both of these genes were either disrupted or overexpressed. None of these alterations affected telomere length or telomere position effect. The potential role of these two (TG1-3)n binding proteins is discussed.  相似文献   

7.
Histoplasma capsulatum is a fungal pathogen that causes respiratory and systemic disease by proliferating within macrophages. While much is known about histoplasmosis, only a single virulence factor has been defined, in part because of the inefficiency of Histoplasma reverse genetics. As an alternative to allelic replacement, we have developed a telomeric plasmid-based system for silencing gene expression in Histoplasma by RNA interference (RNAi). Episomal expression of long RNAs that form stem-loop structures triggered gene silencing. To test the effectiveness of RNAi in Histoplasma, we depleted expression of a gfp transgene as well as two endogenous genes, ADE2 and URA5, and showed significant reductions in corresponding gene function. Silencing was target gene specific, stable during macrophage infection and reversible. We used RNAi targeting AGS1 (encoding alpha-(1,3)-glucan synthase) to deplete levels of alpha-(1,3)-glucan, a cell wall polysaccharide. Loss of alpha-(1,3)-glucan by RNAi yielded phenotypes indistinguishable from an AGS1 deletion: attenuation of the ability to kill macrophages and colonize murine lungs. This demonstrates for the first time that alpha-(1,3)-glucan is an important contributor to Histoplasma virulence.  相似文献   

8.
Expression of lacZ gene fusions affects downstream transcription in yeast.   总被引:2,自引:0,他引:2  
C A Barnes  G C Johnston  R A Singer 《Gene》1991,104(1):47-54
  相似文献   

9.
Nickel enhances telomeric silencing in Saccharomyces cerevisiae   总被引:5,自引:0,他引:5  
Broday L  Cai J  Costa M 《Mutation research》1999,440(2):121-130
Certain nickel compounds including crystalline nickel sulfide (NiS) and subsulfide (Ni3S2) are potent human and animal carcinogens. In Chinese hamster embryo cells, an X-linked senescence gene was inactivated following nickel-induced DNA methylation. Nickel also induced the inactivation of the gpt reporter gene by chromatin condensation and a DNA methylation process in a transgenic gpt+ Chinese hamster cell line (G12), which is located near a heterochromatic region. To determine if nickel can cause gene silencing independently of DNA methylation, based only on the induction of changes in chromatin structure, we measured its effect on gene silencing in Saccharomyces cerevisiae. Growth of yeast in the presence of nickel chloride repressed a telomeric marker gene (URA3) and resulted in a stable epigenetic switch. This phenomenon was dependent on the number of cell doubling prior to selection and also on the distance of the marker gene from the end of the chromosome. The level of TPE (telomeric position effect) increased linearly with elevations of nickel concentration. Addition of magnesium inhibited this effect, but magnesium did not silence the reporter gene by itself. The level of silencing was also assessed following treatment with other transition metals: cobalt, copper and cadmium. In the sublethal range, cobalt induced similar effects as nickel, while copper and cadmium did not change the basal level of gene expression. Silencing by copper and cadmium were evident only at concentrations of those metals where the viability was very low.  相似文献   

10.
It has been previously shown that genes transcribed by RNA polymerase II (RNAP II) are subject to position effect variegation when located near yeast telomeres. This telomere position effect requires a number of gene products that are also required for silencing at the HML and HMR loci. Here, we show that a null mutation of the DNA repair gene RAD6 reduces silencing of the HM loci and lowers the mating efficiency of MATa strains. Likewise, rad6-delta reduces silencing of the telomere-located RNAP II-transcribed genes URA3 and ADE2. We also show that the RNAP III-transcribed tyrosyl tRNA gene, SUP4-o, is subject to position effect variegation when located near a telomere and that this silencing requires the RAD6 and SIR genes. Neither of the two known Rad6 binding factors, Rad18 and Ubr1, is required for telomeric silencing. Since Ubrl is the recognition component of the N-end rule-dependent protein degradation pathway, this suggests that N-end rule-dependent protein degradation is not involved in telomeric silencing. Telomeric silencing requires the amino terminus of Rad6. Two rad6 point mutations, rad6(C88A) and rad6(C88S), which are defective in ubiquitin-conjugating activity fail to complement the silencing defect, indicating that the ubiquitin-conjugating activity of RAD6 is essential for full telomeric silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号