首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 93 毫秒
1.
PICK1的结构与功能研究进展   总被引:1,自引:0,他引:1  
PICK1蛋白是一个从线虫到人都高度保守膜周蛋白,在多种组织中表达,尤以脑和睾丸的表达最高.在细胞内,PICK1定位于核周区和诸如神经突触的特化细胞结构中.PICK1蛋白含一个PDZ结构域和一个BAR结构域,PDZ结构域能和许多膜蛋白结合.而BAR结构域能与脂质分子(主要为磷酸肌醇)相结合,通过这种机制PICK1可调节相关蛋白的亚细胞定位和膜表达.由于各蛋白与PICK1相互作用的PDZ结合基序不同,可利用与特定蛋白结合基序相同的PDZ结合多肤竞争性地结合PDZ结构域,特异性地阻断该蛋白的作用,从而特异性地增强或减弱PICK1在某组织中的作用,为PICK1的临床应用提供了药理基础.  相似文献   

2.
蛋白激酶Cα相互作用蛋白1(protein interacting with Cα kinase 1, PICK1)是衔接膜上受体和蛋白激酶Cα的重要蛋白.利用荧光光谱结合定点突变技术 、蛋白与脂质覆盖法等方法,分析了PICK1蛋白N末端区域几个酸性氨基酸残基对PDZ 结构域与膜脂结合的影响,以及钙离子结合N末端酸性区域对PDZ脂结合能力的调节. 结果显示, 带有上游酸性区域的PDZ结构域(NPDZ)的脂质结合能力仅相当PDZ结构 域的15%,相比单独的PDZ结构域与脂质的解离常数Kd(PDZ)为1.58×103 μg·L-1, NPDZ与脂质解离常数Kd(NPDZ)为3.3×104μg·L-1,其中在N末端酸性残基中D8与 D12两个天冬氨酸是影响脂质结合能力减弱的关键残基,若将二者分别突变为丙氨酸 后,NPDZ与脂质的解离常数分别为:Kd (D8/A)=4.42×103μg·L-1;Kd (D12/A) =1.73×103μg·L-1接近于PDZ结构域与脂质结合能力;钙离子会增强NPDZ脂结合能力,当钙离子浓度达到30 μmol/L时,NPDZ的脂结合能力提高2.3倍,但只相当于PDZ的50% 的结合能力.  相似文献   

3.
蛋白激酶Cα相互作用蛋白的结构与功能   总被引:1,自引:0,他引:1  
蛋白激酶Cα相互作用蛋白(protein interacting with Cα kinase,PICK1)是蛋白激酶Cox(protein kinase Cα,PKCα)的靶蛋白之一,也是在PKCα和突触后膜受体蛋白间起重要作用的衔接蛋白。PICK1分别由PDZ结构域、BAR结构域以及卷曲螺旋区和酸性氨基酸区组成。PICK1中的PDZ结构域和受体蛋白、转运蛋白、衔接蛋白的相互作用报道较多,BAR结构域则与支架蛋白、质膜等相互作用。PICK1在突触可塑性、神经递质传递、外周神经感觉、细胞生长和黏连等方面发挥重要作用。本文对PICK1的结构和功能进行综述。  相似文献   

4.
蛋白激酶Ca相互作用蛋白的结构与功能   总被引:1,自引:0,他引:1  
蛋白激酶Cα相互作用蛋白(proteininteractingwithCαkinase,PICK1)是蛋白激酶Cα(proteinkinaseCα,PKCα)的靶蛋白之一,也是在PKCα和突触后膜受体蛋白间起重要作用的衔接蛋白。PICK1分别由PDZ结构域、BAR结构域以及卷曲螺旋区和酸性氨基酸区组成。PICK1中的PDZ结构域和受体蛋白、转运蛋白、衔接蛋白的相互作用报道较多,BAR结构域则与支架蛋白、质膜等相互作用。PICK1在突触可塑性、神经递质传递、外周神经感觉、细胞生长和黏连等方面发挥重要作用。本文对PICK1的结构和功能进行综述。  相似文献   

5.
蛋白激酶Cα相互作用蛋白1(PICK1) 是从线虫到人的所有生物中非常保守的一类存在于细胞质中的膜结合蛋白,在蛋白质转运,以及细胞内信号转导过程中发挥重要作用.通过基因重组技术获得PICK1及其截短的 N-PDZ(1~110 残基)和 BAR-C(128~416残基)重组蛋白,结合变性与非变性聚丙烯酰胺凝胶电泳,以及分子排阻层析,表明溶液中的PICK1主要以二聚体形式存在.利用荧光光谱分析PICK1与金属离子Ca2+和Mg2+的结合情况.结果表明,在0.02 mol/L Hepes, pH 7.2,随着2种金属离子的不断滴加,PICK1在338 nm 处的最大荧光强度逐渐降低,PICK1与Ca2+结合常数为Ka1=(2.34±0.20)×10.6 L/mol-1,Ka2=(7.75±0.62)×10.5 L/mol-1,而Mg2+结合常数为Ka=(5.00±0.40)×10.6 L/mol-1.另外,对PICK1的N端区域N-PDZ和C端区域BAR-C的重组片段与金属离子Ca2+和Mg2+结合情况进一步分析表明,Ca2+既能与PICK1的N 端N-PDZ结合,又可与C端BARC结合,而Mg2+只结合在PICK1的N-PDZ区域.比较Ca2+或Mg2+对PICK1结合脂质的影响,显示Ca2+能明显增强蛋白和脂质的结合.  相似文献   

6.
G蛋白信号调节因子的结构分类和功能   总被引:2,自引:0,他引:2  
Du YS  Huang BR 《生理科学进展》2005,36(3):215-219
G蛋白信号调节因子是能够直接与激活的Gα亚基结合,显著刺激Gα亚基上的GTP酶活性,加速GTP水解,从而灭活或终止G蛋白信号的一组分子大小各异的多功能蛋白质家族。它们都共同拥有一个130个氨基酸的保守的RGS结构域,其功能是结合激活的Gα亚基,负调节G蛋白信号。许多RGS蛋白还拥有非RGS结构域,能够结合其它信号蛋白,从而整合和调节G蛋白信号之间以及G蛋白和其它信号系统之间的关系。  相似文献   

7.
8.
Proteins perform most of functions in life. The abnormalities of key proteins may lead to diseases. Some of those proteins are potential targets for developing drugs. PICK1(protein interacting with Cα kinase 1), which is involved in the interactions between many different proteins in a variety of cellular contexts, is believed to play important roles in diverse pathological conditions such as cancer, schizophrenia, pain and Parkinson's disease, etc, thereby being believed to a potential drug target protein. Most of the interactions between PICK1 and its ligand proteins are mediated by its PDZ domain recognition of carboxyl terminal PDZ binding motifs of target proteins. The well-characterized binding properties of PDZ domain enable it a promising drug binding site. Targeting PDZ by blocking peptides or small molecules may be able to disrupt the interactions between PICK1 and its binding partners, and would be a feasible method for the development of drugs against related diseases.  相似文献   

9.
刘阁逄越  李庆伟刘欣 《遗传》2013,35(9):1072-1080
C1q蛋白家族由众多含C1q结构域的蛋白组成, 从细菌到高等哺乳动物中都有分布。这类蛋白由一条信号肽、胶原样区(Collage-like region, CLR)和C1q球状结构域(Globular C1q domain, gC1q)组成。C1q蛋白家族根据其结构特点, 可分为三大类分子:C1q、C1q-like和ghC1q。C1q是补体经典途径的起始分子, 能够识别免疫复合物, 启动补体系统经典途径; 此外, 作为一种模式识别受体分子(Pattern recognition receptor, PRR), 它可以结合种类繁多的配体。C1q-like蛋白的结构类似于C1q分子, 含有CLR和gC1q结构域, 在水蛭中参与神经系统的修复, 在脊椎动物中实现从凝集素到免疫球蛋白结合分子的功能转变, 参与补体系统的激活。ghC1q蛋白只具有gC1q结构域和一段短的N末端序列, 包括分泌型蛋白(sghC1q)和非分泌型蛋白(cghC1q)。sghC1q在无脊椎动物固有免疫系统中发挥重要作用; 脊椎动物中的sghC1q可作为一类新型跨神经元调节因子, 在大脑的许多区域调节突触发育和突触可塑性。cghC1q基因最早可追溯至芽孢杆菌属的细菌中, 具有典型的gC1q果冻卷结构, 说明gC1q结构域有着非常悠久的进化历程且结构高度保守。文章对C1q蛋白家族的结构、分布、分类以及功能进行综述, 以期为从事该领域研究的科研人员提供有益参考。  相似文献   

10.
为研究人高迁移率族蛋白B1(high-mobility group box-1HMGB1)酸性尾端对其抗菌活 性的影响,提取人外周血单个核细胞总RNA,经RT|PCR扩增得到编码人HMGB1的cDNA及其缺失酸性尾端的突变体cDNA(mcDNA),原核表达载体pQE|80L分别表达重组人HMGB1蛋白(rhHMGB1)及缺失酸性尾端的突变体蛋白(mrhHMGB1),经Ni2+- NTA亲和层析柱纯化两种蛋白.通过试管稀释法、琼脂扩散法两种体外抗菌实验观察,并比较rhHMGB1mrhHMGB1抗菌活性的差异.实验结果显示,rhHMGB1对大肠杆菌JM109、ATCC2592 2、DH5α有明确的抗菌活性,其抗菌活性强弱依次为JM109>ATCC25922>DH5α,而mrhHMGB1 对大肠杆菌JM109、ATCC25922、DH5α则均无抗菌活性.实验结果表明,人HMGB1的酸性尾端对其抗菌活性的发挥至关重要,此研究为进一步探讨人HMGB1抗菌功能的机制奠定了基础.  相似文献   

11.
We have purified Ca2+-ATPase from synaptosomal membranes (SM)1 from ratcerebellum by calmodulin affinity chromatography. The enzyme was identifiedas plasma membrane Ca2+-ATPase by its interaction with calmodulin andmonoclonal antibodies produced against red blood cell (RBC) Ca2+-ATPase, andby thapsigargin insensitivity. The purpose of the study was to establishwhether two regulators of the RBC Ca2+-ATPase, calmodulin and protein kinaseC (PKC), affect the Ca2+-ATPase isolated from excitable cells and whethertheir effects are comparable to those on the RBC Ca2+-ATPase. We found thatcalmodulin and PKC activated both enzymes. There were significantquantitative differences in the phosphorylation and activation of the SMversus RBC Ca2+-ATPase. The steady-state Ca2+-ATPase activity of SMCa2+-ATPase was approximately 3 fold lower and significantly less stimulatedby calmodulin. The initial rate of PKC catalyzed phosphorylation (in thepresence of 12-myristate 13-acetate phorbol) was approximately two timesslower for SM enzyme. While phosphorylation of RBC Ca2+-ATPase approachedmaximum level at around 5 min, comparable level of phosphorylation of SMCa2+-ATPase was observed only after 30 min. The PKC-catalyzedphosphorylation resulted in a statistically significant increase inCa2+-ATPase activity of up to 20-40%, higher in the SM Ca2+-ATPase.The differences may be associated with diversities in Ca2+-ATPase functionin erythrocytes and neuronal cells and different isoforms composition.  相似文献   

12.
Abstract: We examined protein kinase C (PKC) activity in Ca2+-dependent PKC (Ca2+-dependent PKC activities) and Ca2+-independent PKC (Ca2+-independent PKC activities) assay conditions in brains from Alzheimer's disease (AD) patients and age-matched controls. In cytosolic and membranous fractions, Ca2+-dependent and Ca2+-independent PKC activities were significantly lower in AD brain than in control brain. In particular, reduction of Ca2+-independent PKC activity in the membranous fraction of AD brain was most enhanced when cardiolipin, the optimal stimulator of PKC-ε, was used in the assay; whereas Ca2+-independent PKC activity stimulated by phosphatidylinositol, the optimal stimulator of PKC-δ, was not significantly reduced in AD. Further studies on the protein levels of Ca2+-independent PKC-δ, PKC-ε, and PKC-ζ in AD brain revealed reduction of the PKC-ε level in both cytosolic and membranous fractions, although PKC-δ and PKC-ζ levels were not changed. These findings indicated that Ca2+-dependent and Ca2+-independent PKC are changed in AD, and that among Ca2+-independent PKC isozymes, the alteration of PKC-ε is a specific event in AD brain, suggesting its crucial role in AD pathophysiology.  相似文献   

13.
    
The casein kinase 2 interacting protein‐1 (CKIP‐1) is involved in many cellular functions, including apoptosis, signalling pathways, cell growth, cytoskeleton and bone formation. Its N‐terminal pleckstrin homology (PH) domain is thought to play an important role in membrane localization and controls shuttling of CKIP‐1 between the plasma membrane and nucleus. In this study, the human CKIP‐1 PH domain was purified but problems were encountered with nucleic acid contamination. An S84D/S86D/S88D triple mutant designed to abolish nucleic acid binding was purified and successfully crystallized. Single crystals diffracted to 1.7 Å resolution and belonged to space group P43212 with unit‐cell parameters a = 53.0, b = 53.0, c = 113.8 Å, α = β = γ = 90.0°.  相似文献   

14.
Abstract: Mitogen-activated protein kinase (MAP kinase) was activated by stimulation of glutamate receptors in cultured rat hippocampal neurons. Ten micromolar glutamate maximally stimulated MAP kinase activity, which peaked during 10 min and decreased to the basal level within 30 min. Experiments using glutamate receptor agonists and antagonists revealed that glutamate stimulated MAP kinase through NMDA and metabotropic glutamate receptors but not through non-NMDA receptors. Glutamate and its receptor agonists had no apparent effect on MAP kinase activation in cultured cortical astrocytes. Addition of calphostin C, a protein kinase C (PKC) inhibitor, or down-regulation of PKC activity partly abolished the stimulatory effect by glutamate, but the MAP kinase activation by treatment with ionomycin, a Ca2+ ionophore, remained intact. Lavendustin A, a tyrosine kinase inhibitor, was without effect. In experiments with 32P-labeled hippocampal neurons, MAP kinase activation by glutamate was associated with phosphorylation of the tyrosine residue located on MAP kinase. However, phosphorylation of Raf-1, the c- raf protooncogene product, was not stimulated by treatment with glutamate. Our observations suggest that MAP kinase activation through glutamate receptors in hippocampal neurons is mediated by both the PKC-dependent and the Ca2+-dependent pathways and that the activation of Raf-1 is not involved.  相似文献   

15.
    
The parkin‐associated endothelial‐like receptor (PAELR, GPR37) is an orphan G protein‐coupled receptor that interacts with and is degraded by parkin‐mediated ubiquitination. Mutations in parkin are thought to result in PAELR accumulation and increase neuronal cell death in Parkinson's disease. In this study, we find that the protein interacting with C‐kinase (PICK1) interacts with PAELR. Specifically, the Postsynaptic density protein‐95/Discs large/ZO‐1 (PDZ) domain of PICK1 interacted with the last three residues of the c‐terminal (ct) located PDZ motif of PAELR. Pull‐down assays indicated that recombinant and native PICK1, obtained from heterologous cells and rat brain tissue, respectively, were retained by a glutathione S‐transferase fusion of ct‐PAELR. Furthermore, coimmunoprecipitation studies isolated a PAELR‐PICK1 complex from transiently transfected cells. PICK1 interacts with parkin and our data showed that PICK1 reduces PAELR expression levels in transiently transfected heterologous cells compared to a PICK1 mutant that does not interact with PAELR. Finally, PICK1 over‐expression in HEK293 cells reduced cell death induced by PAEALR over‐expression during rotenone treatment and these effects of PICK1 were attenuated during inhibition of the proteasome. These results suggest a role for PICK1 in preventing PAELR‐induced cell toxicity.

  相似文献   


16.
    
A physiological concentration of extracellular ATP stimulated biphasic Ca(2+) signal, and the Ca(2+) transient was decreased and the Ca(2+) sustain was eliminated immediately after removal of ATP and Ca(2+) in RBA-2 astrocytes. Reintroduction of Ca(2+) induced Ca(2+) sustain. Stimulation of P2Y(1) receptors with 2-methylthioadenosine 5'-diphosphate (2MeSADP) also induced a biphasic Ca(2+) signaling and the Ca(2+) sustains were eliminated using Ca(2+)-free buffer. The 2MeSADP-mediated biphasic Ca(2+) signals were inhibited by phospholipase C (PLC) inhibitor U73122, and completely blocked by P2Y(1) selective antagonist MRS2179 and protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) whereas enhanced by PKC inhibitors GF109203X and Go6979. Inhibition of capacitative Ca(2+) entry (CCE) decreased the Ca(2+)-induced Ca(2+) entry; nevertheless, ATP further enhanced the Ca(2+)-induced Ca(2+) entry in the intracellular Ca(2+) store-emptied and CCE-inhibited cells indicating that ATP stimulated Ca(2+) entry via CCE and ionotropic P2X receptors. Furthermore, the 2MeSADP-induced Ca(2+) sustain was eliminated by apyrase but potentiated by P2X(4) allosteric effector ivermectin (IVM). The agonist ADPbetaS stimulated a lesser P2Y(1)-mediated Ca(2+) signal and caused a two-fold increase in ATP release but that were not affected by IVM whereas inhibited by PMA, PLC inhibitor ET-18-OCH(3) and phospholipase D (PLD) inhibitor D609, and enhanced by removal of intra- or extracellular Ca(2+). Taken together, the P2Y(1)-mediated Ca(2+) sustain was at least in part via P2X receptors activated by the P2Y(1)-induced ATP release, and PKC played a pivotal role in desensitization of P2Y(1) receptors in RBA-2 astrocytes.  相似文献   

17.
    
Synaptotagmin acts as the Ca2+ sensor for neural and endocrine exocytosis. Synaptotagmin 5 has been demonstrated to play a key role in the acquisition of cathepsin D and the vesicular proton ATPase and in Ca2+‐dependent insulin exocytosis. The C2 domains modulate the interaction of synaptotagmin with the phospholipid bilayer of the presynaptic terminus and effector proteins such as the SNARE complex. This study reports the cloning, expression in Escherichia coli, purification, crystallization and preliminary X‐ray analysis of the C2A domain of human synaptotagmin 5 with an N‐terminal His6 tag. The crystals diffracted to 1.90 Å resolution and belonged to the hexagonal space group P65, with unit‐cell parameters a = b = 93.97, c = 28.05 Å. A preliminary model of the protein structure has been built and refinement of the model is ongoing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号