首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Summary Experiments were performed to test specific predictions of an integrated red cell model developed by Lew and Bookchin [Lew, V.L., Bookchin, R.M.J. Membrane Biol. 92:57–74 (1986)], that K-permeabilized human red cells suspended in low-K media would dehydrate and lose an alkaline, hypertonic fluid with excess K over accompanying anions, and that cell dehydration would precede medium alkalinization. Red cells were suspended at about 30% hematocrit in an initially K-free Na-saline and permeabilized to K by the addition of valinomycin. The results showed that by the time a quasi-steady state had been reached the cells had lost the equivalent of a hypertonic fluid containing about 180 mM KCl (SCN) and 10 mM KOH, and that cell dehydration did precede alkalinization of the medium, in good agreement with the theoretical predictions. Since these experiments critically test the interaction between transport, pH and volume regulatory functions in the human red cell, the observed agreement validates the basic assumptions and structure of the integrated model. The functional implications of these results are discussed.  相似文献   

2.
The fast potentiometric indicator di-4-ANEPPS is examined in four different preparations: lipid vesicles, red blood cells, squid giant axon, and guinea pig heart. The dye gives consistent potentiometric responses in each of these systems, although some of the detailed behavior varies. In lipid vesicles, the dye displays an increase in fluorescence combined with a red shift of the excitation spectrum upon hyperpolarization. Similar behavior is found in red cells where a dual wavelength radiometric measurement is also demonstrated. The signal-to-noise ratio of the potentiometric fluorescence response is among the best ever recorded on the voltage-clamped squid axon. The dye is shown to be a faithful and persistent monitor of cardiac action potentials with no appreciable loss of signal or deterioration of cardiac activity for periods as long as 2 hr with intermittent illumination every 10 min. These results, together with previously published applications of the dye to a spherical lipid bilayer model and to cells in culture, demonstrate the versatility of di-4-ANEPPS as a fast indicator of membrane potential.  相似文献   

3.
Summary Polymerization-depolymerization of proteins within cells and subcellular organelles may have powerful osmotic effects. As a model to study these we analyzed the predicted volume changes following hemoglobin (Hb) S polymerization in sickle cell anemia (SS) red cells with different initial volumes. The theoretical analysis predicted that dehydrated SS red cells may sustain large polymerization-induced volume shifts whose direction would depend on whether or not small solutes were excluded from polymer-associated water. Experiments with SS cells from promptly fractionated venous blood showed oxygenation-induced swelling, maximal in the densest cells, in support of nonexclusion models. The predicted extent of cell dehydration on polymerization was strongly influenced by factors such as the dilution of residual soluble Hb and the increased osmotic contribution of Hb in cells dehydrated by salt loss, largely overlooked in the past. The osmotic effects of polymer formation may thus play an important part in microcirculatory infarction by dense SS cells, as they become even denser and stiffer during deoxygenation in the capillaries.  相似文献   

4.
Summary We have studied the all or none cell response of Ca2+-dependent K+ channels to added Ca in human red cells depleted of ATP by incubation with iodoacetate and inosine. A procedure was used which allows separation and differential analysis of responding and nonresponding cells. Responding (H for heavy) cells incubated in medium containing 5mM K lose KCl and water and increase their density to the point of sinking on diethylphthalate (specific gravity=1.12) on centrifugation. Nonresponding (L for light) cells do not lose KCl at all. There is no intermediate behavior. Increasing the Ca concentration in the medium increases the fraction of cells which become H. No differences in the sensitivity to Ca2+ of the individual K+ channels were detected in inside-out vesicles prepared either from H or from L cells. The Ca content of H cells was higher than that of L cells. Cells depleted of ATP by incubation with iodoacetate and inosine sustain pump-leak Ca fluxes of about 15 mol/liter cells per hour. ATP seems to be resynthesized in these cells at the expense of cell 2,3-diphosphoglycerate stores at a rate of about 150 mol/liter cells per hour. Inhibition of 2,3-diphosphoglycerate phosphatase by tetrathionate increased 6–8 times the measured rate of uptake of external45Ca. This was accompanied by an increase in the fraction of H cells. All or none cell responses of Ca2+-dependent K channels have also been evidenced in intact human red cells on addition of Pb. They have the same characteristics as those in responding and nonresponding cells. The detailed study of the kinetics of Pb-induced shrinkage of red cells suspended in medium containing 5mM K showed that changes of Pb concentration changed not only the fraction of H cells but also the rate of shrinkage of responding cells. H cells generated by Pb treatment contained significantly more lead than L cells. The above results suggest that the two all or none cell responses studied here can be explained by heterogeneity of agonist distribution among cells. Since pump-leak fluxes exist in both cases, differences of agonist distribution could be generated by heterogeneity of pumping among cells. This interpretation turns interest from K channels to Ca pumps to explain the heterogeneous behavior of red cells in response to a uniform stimulus.  相似文献   

5.
Adult rainbow trout were acclimated to three different temperature and photoperiod regimes: 17°C, 14 h light: 10 h dark (summer); 7° C, 14 h light: 10 h dark; and 5° C, 8 h light: 16 h dark (winter). Blood was collected from these fish after 40 days acclimation, and the response of red blood cells to in vitro adrenergic stimulation was assessed. To examine potential seasonal variations in endogenous levels of circulating catecholamines, plasma levels of adrenaline (Ad) and noradrenaline (NAd) were measured at rest and after exercise. At rest, there were no differences between groups in plasma levels of either Ad or NAd, but, after exercise, the pattern of catecholamine elevation differed. In fish acclimated to 17 and 7° C in summer, Ad and NAd increased by about the same amount (10–15 times). In fish acclimated to 5° C in winter, NAd increased about three-fold, compared to the near 50-fold increase in Ad levels. Whether this difference between groups can be attributed to seasonal influences is unclear. At both low (0·5%) and high (2%) PCO 2, adrenergic stimulation (2 × 10-7 M Ad) of trout red cells in vitro led to a significant reduction in MCHC (mean cell [haemoglobin]), compared to non-stimulated cells. However, only at the high PCO 2 were pHe and red cell pHi significantly different from those in the non-stimulated cells: the latter was higher and the former lower in the stimulated cells. There were no differences in the response of red cells to adrenergic stimulation between groups of fish. Under the conditions of the present study no influence of season and/or temperature on the in vitro response of trout red cells to adrenergic stimulation was shown.  相似文献   

6.
《Molecular membrane biology》2013,30(3-4):187-202
Human red blood cells were separated according to density by centrifugation through mixtures of phthalate esters. The densest 20% of the erythrocyte population (old cells) had reduced volume and water content compared to the lightest 20% of the cells (young cells). Corpuscular hemoglobin content was unchanged. Young cells had 50% more potassium (K+) than old cells, but their total intracellular concentration was only slightly higher; old cells had a small increase in sodium (Na+) concentration. Active K+ transport of young cells was 37% higher than that of old cells. [3H] + Ouabain binding revealed that this difference was the result of more K+ pump sites on young cells, which bound 530 ouabain molecules per cell at 100% K+ pump inhibition, as compared to 400 for old cells; unseparated cells bound 450-500 molecules. The relative rates of ouabain binding were identical for the two cell types. Old cells exhibited a greater passive permeability to K+, haying a rate coefficient for ouabain-insensitive K+ influx 1.8 times that of young cells. There is evidence to suggest that in the face of reduced pump activity this augmented K+ “leak” might enhance the osmotic stability of the old cells and function to lengthen their life span.  相似文献   

7.
目的:探讨快速、有效的细胞融合条件。方法:用鸡红细胞为材料,聚乙二醇(Mw=4000)为诱导剂,诱导鸡红细胞融合。结果:鸡红细胞融合的最适温度为39℃,最适时间为15min。结论:在该条件下,同时用Giemsa染液对融合细胞染色,实验观察效果明显。  相似文献   

8.
Summary This study establishes a method for determining the concentration of Na and K in single red blood cells from electron probe microanalysis of a cell's Na and K content. To this end, red blood cells were separated into subpopulations according to their buoyant density by means of bovine serum density gradient centrifugation. Cell water and Na+K contents were then determined in each fraction by conventional analytic methods with cell volume estimated from measurements of hematocrits and cell number. It was found that an inverse relationship obtains between the mean cell volume and buoyant cell density since cells increased in size as density decreased. Although the amount of hemoglobin per cell was found to slightly increase as cell density decreased, hemoglobin concentration showed the inverse relationship, indicating that buoyant cell density differences are primarily the result of differences in hemoglobin concentration. In confirmation of Funder and Wieth (Funder, J., Wieth, J.O. 1966.Scand. J. Lab. Invest. 18:167–180) cell water and cell volume was found to vary directly with the summed content of Na+K. Finally, by means of electron probe microanalysis of single cells, the cellular concentration of hemoglobin was found to vary inversely with the Na+K content, providing a quantitative basis for directly estimating cell volume, and thus ionic concentration, with this technique.  相似文献   

9.
Curcumin, a natural, biologically active compound extracted from rhizomes of Curcuma species, has been shown to possess potent anti-inflammatory, anti-tumor, and anti-oxidative properties. The mechanism by which curcumin initiates apoptosis remains poorly understood. In the present report we investigated the effect of curcumin on the activation of the apoptotic pathway in human leukemia U937 cells. Curcumin induces apoptosis in U937 cells via a mechanism that appears to involve down-regulation of the anti-apoptotic Bcl-xL, and IAP proteins, release of cytochrome c, and activation of caspase 3. Ruthenium red, an inhibitor of mitochondrial uniporter, specifically inhibits curcumin-induced apoptosis in U937 cells. Cotreatment with ruthenium red markedly prevented the activation of caspase 3, cytochrome c release, and cell death, suggesting a role for intracellular Ca(2+) in this process. Curcumin induced a marked depletion of [Ca(2+)](i) in Caki cells bathed with both Ca(2+)-containing and -free solutions. Thapsigargin (TG), cyclopiazonic acid (CPA), and dantolene (DAN) had no effect. Ruthenium red, an inhibitor of mitochondrial uniporter, only attenuated the curcumin-induced [Ca(2+)](i) depletion in a dose-dependent manner. These data indicate that curcumin acts as a stimulator of intracellular Ca(2+) uptake into mitochondria via uniporter pathway and may involve in the execution of apoptosis.  相似文献   

10.
Alanine and glutamine transport have been studied during red blood cell maturation in the rat. Kinetic parameters of Na+-dependent L-alanine transport were:K m 0.43 and 1.88 mM andV max 158 and 45 nmoles/ml ICW/min for reticulocytes and erythrocytes, respectively. During red cell maturation in the rat there is a loss of capacity and affinity of the system ASC for L-alanine transport. The values for Na+-dependent L-glutamine transport in reticulocytes wereK m 0.51 mM andV max 157 nmoles/ml ICW/min. On the other hand, a total loss of L-glutamine transport mediated by both N and ASC systems is demonstrated in mature red cells. This seems to indicate that during rat red cell maturation the system N disappears. Furthermore, the system ASC specificity in mature cells changes, and glutamine enters the red cell by non-mediated diffusion processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号