首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
We describe the design, construction, and operating characteristics of a doubly resonant cylindrical microwave cavity. This cavity has been developed to allow a search for nonlinear RF energy conversion in biological cells. Cells with a diode-like nonlinearity could demodulate a modulated RF carrier wave and generate low frequency signals in an exposed biological preparation. The cavity is designed to be resonant on the TE(111) mode at about 890 MHz and on the TE(113) mode at about 1780 MHz. The cavity performs exactly as designed and has proved capable of detecting the nonlinearity in a microscopic Schottky diode test structure. The sensitivity is sufficient to detect any nonlinearity in a collection of biological cells that could have any potential biological significance.  相似文献   

2.
A doubly resonant cavity was used to search for nonlinear radiofrequency (RF) energy conversion in a range of biological preparations, thereby testing the hypothesis that living tissue can demodulate RF carriers and generate baseband signals. The samples comprised high‐density cell suspensions (human lymphocytes and mouse bone marrow cells); adherent cells (IMR‐32 human neuroblastoma, G361 human melanoma, HF‐19 human fibroblasts, N2a murine neuroblastoma (differentiated and non‐differentiated) and Chinese hamster ovary (CHO) cells) and thin sections or slices of mouse tissues (brain, kidney, muscle, liver, spleen, testis, heart and diaphragm). Viable and non‐viable (heat killed or metabolically impaired) samples were tested. Over 500 cell and tissue samples were placed within the cavity, exposed to continuous wave (CW) fields at the resonant frequency (f) of the loaded cavity (near 883 MHz) using input powers of 0.1 or 1 mW, and monitored for second harmonic generation by inspection of the output at 2f. Unwanted signals were minimised using low pass filters (≤1 GHz) at the input to, and high pass filters (≥1 GHz) at the output from, the cavity. A tuned low noise amplifier allowed detection of second harmonic signals above a noise floor as low as −169 dBm. No consistent second harmonic of the incident CW signals was detected. Therefore, these results do not support the hypothesis that living cells can demodulate RF energy, since second harmonic generation is the necessary and sufficient condition for demodulation. Bioelectromagnetics 31:556–565, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
The presence of harmonic products due to possible nonlinear interaction of amplitude modulated RF signals in living cells is best detected by using a cavity with high quality factor. Harmonic products generated by elementary oscillators can be trapped and accumulated in a cavity, permitting detection sensitivity much greater than in an open environment, where they would be radiated in all directions. The experimental method described herein is a systematic approach to detection of the non-Planck RF energy (if any) emitted by an exposed sample of living cells. Balzano and Sheppard [Balzano and Sheppard (2003): Bioelectromagnetics 24:473-482] classified the non-Planck RF emissions from living cells as coming from (1). nonlinear interactions and (2). inelastic interactions. Nonlinear harmonic products would appear in the band at twice the frequency of an amplitude modulated RF carrier. Inelastic interaction products resulting from the interaction between the incident RF energy and normally occurring mechanical vibrations are found in the band immediately adjacent to the carrier. Detection of the latter signals is difficult because of this close spectral proximity, for example, 1 part in 10(7) for 100 Hz modulation of a GHz carrier. Modern audio spectrum analyzers have excellent selectivity, providing 60 dB rejections only 2 kHz away from the carrier. By judicious selection of the amplitude modulation (AM) frequency, frequency of the RF carrier, and size of the biological sample, it is possible to achieve very high sensitivity (about -90 dBm) with commercially available instrumentation. The presence (or absence) of harmonics in the band adjacent to the amplitude modulated RF carrier would establish (or negate) the existence of coherent interactions between mechanical vibrations in the cell ensemble and the incident RF signal.  相似文献   

4.
Probing membrane potential with nonlinear optics.   总被引:2,自引:1,他引:1       下载免费PDF全文
The nonlinear optical phenomenon of second harmonic generation is shown to have intrinsic sensitivity to the voltage across a biological membrane. Our results demonstrate that this second order nonlinear optical process can be used to monitor membrane voltage with excellent signal to noise and other crucial advantages. These advantages suggest extensive use of this novel approach as an important new tool in elucidating membrane potential changes in biological systems. For this first demonstration of the effect we use a chiral styryl dye which exhibits gigantic second harmonic signals. Possible mechanisms of the voltage dependence of the second harmonic signal are discussed.  相似文献   

5.
The model biological organisms Drosophila melanogaster and Drosophila virilis have been utilized to assess effects on apoptotic cell death of follicles during oogenesis and reproductive capacity (fecundity) decline. A total of 280 different experiments were performed using newly emerged flies exposed for short time daily for 3–7?d to various EMF sources including: GSM 900/1800?MHz mobile phone, 1880–1900?MHz DECT wireless base, DECT wireless handset, mobile phone-DECT handset combination, 2.44?GHz wireless network (Wi-Fi), 2.44?GHz blue tooth, 92.8?MHz FM generator, 27.15?MHz baby monitor, 900?MHz CW RF generator and microwave oven’s 2.44?GHz RF and magnetic field components. Mobile phone was used as a reference exposure system for evaluating factors considered very important in dosimetry extending our published work with D. melanogaster to the insect D. virilis. Distance from the emitting source, the exposure duration and the repeatability were examined. All EMF sources used created statistically significant effects regarding fecundity and cell death-apoptosis induction, even at very low intensity levels (0.3?V/m blue tooth radiation), well below ICNIRP’s guidelines, suggesting that Drosophila oogenesis system is suitable to be used as a biomarker for exploring potential EMF bioactivity. Also, there is no linear cumulative effect when increasing the duration of exposure or using one EMF source after the other (i.e. mobile phone and DECT handset) at the specific conditions used. The role of the average versus the peak E-field values as measured by spectrum analyzers on the final effects is discussed.  相似文献   

6.
Summary Human health aspects and biological effects of radio frequency (RF) and microwave radiation have been in the focus of research efforts in the last decade. An understanding of the interaction mechanisms between such radiation and living systems is essential in interpreting experimental results and assessing potential health hazards.A comprehensive review of basic biophysical interaction mechanisms between RF and microwaves in the frequency range between 10 MHz and 300 GHz and biological systems is provided in this paper. The interactions at various levels of organization of a living organisms such as molecular, cellular and macroscopic are discussed.  相似文献   

7.
The development and analysis of three waveguides for the exposure of small biological in vitro samples to mobile communication signals at 900 MHz (GSM, Global System for Mobile Communications), 1.8 GHz (GSM), and 2 GHz (UMTS, Universal Mobile Telecommunications System) is presented. The waveguides were based on a fin‐line concept and the chamber containing the samples bathed in extracellular solution was placed onto two fins with a slot in between, where the exposure field concentrates. Measures were taken to allow for patch clamp recordings during radiofrequency (RF) exposure. The necessary power for the achievement of the maximum desired specific absorption rate (SAR) of 20 W/kg (average over the mass of the solution) was approximately Pin = 50 mW, Pin = 19 mW, and Pin = 18 mW for the 900 MHz, 1800 MHz, and 2 GHz devices, respectively. At 20 W/kg, a slight RF‐induced temperature elevation in the solution of no more than 0.3 °C was detected, while no thermal offsets due to the electromagnetic exposure could be detected at the lower SAR settings (2, 0.2, and 0.02 W/kg). A deviation of 10% from the intended solution volume yielded a calculated SAR deviation of 8% from the desired value. A maximum ±10% variation in the local SAR could occur when the position of the patch clamp electrode was altered within the area where the cells to be investigated were located. Bioelectromagnetics 32:102–112, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
A new microwave exposure system for biological experiments with well-defined exposure conditions and improved control of the exposure parameters consisting of variable frequency power source, coaxial to waveguide transition, matching network and single-mode resonant cavity with movable shorting plunger was fabricated and characterized. The introduction of a biological sample into a resonant cavity has a large impact on its field configuration and port impedance. As such, the properties, geometry and position of the biological sample become a part of the electrical properties of the microwave circuit. With that change, the electrical properties of the resonant cavity, such as impedance, quality factor and resonant frequency, also change. In this study, an appropriate coupling system with effective power transfer and an algorithm to tuning and coupling of resonant cavity in resonance before and after the introduction of biological sample have been proposed. This procedure will lead to a known dose distribution within the biological sample and allow a better comparison with other studies. Coupling of the electromagnetic energy into a resonant cavity was experimentally investigated. Graphical representation of cavity impedance in case of undercoupled, critically coupled and overcoupled cavity has been presented. Critical coupling of an empty resonant cavity has been accomplished at voltage standing wave ratio (VSWR) 1.01, at resonance frequencies 900 and 947.5 MHz. Critical coupling with the introduction of a biological sample has been accomplished at VSWR ≤ 1.07 for frequency bandwidth 1 MHz and VSWR ≤ 1.5 for frequency bandwidth up to 5 MHz with central frequency 947.5 MHz.  相似文献   

9.
Previously, saturation transfer (ST-EPR) studies of biomolecular dynamics have involved the use of a resonant cavity and the V'2 display (absorption, second harmonic, out of phase). In the present study, we replaced the resonant cavity with a loop-gap resonator and used the U'1 display (dispersion, first harmonic, out of phase) to study spin-labeled muscle fibers. The new resonator and display showed several advantages over those previously used. It produced virtually noiseless U'1 spectra on a 0.4 microliter sample using a 4 min scan; previous U'1 experiments on spin-labeled muscle, using a conventional rectangular cavity, resulted in an unacceptably low signal-to-noise ratio. The high filling factor of the resonator facilitated the study of these extremely small fiber bundles and permitted high microwave field intensities to be achieved at much lower incident microwave power levels, thus greatly enhancing the signal-to-noise ratio in U'1 experiments. This reduction in the noise level made it possible to benefit from the other advantages of U'1 over V'2, such as stronger signals, simpler line shapes, and simpler data analysis. For these muscle fiber samples, the resulting sensitivity (signal/noise/sample volume) of the U'1 signals was greater than 100 times that of V'2 signals obtained in a conventional cavity. Another advantage of the U'1 display is that signals from weakly immobilized probes, i.e., probes that have nanosecond rotational mobility relative to the labeled protein (myosin), are greatly suppressed relative to strongly immobilized probes. This reduces the ambiguity of spectral analysis, and eliminates the need for chemical treatments [e.g., using K3Fe(CN)6] that were previously required in muscle fibers and other systems. Further suppression of this weakly immobilized component was achieved in U'1 spectra by increasing the microwave power and decreasing the field modulation frequency.  相似文献   

10.
An apparatus is described which in the frequency range from about 5 to 500 MHz allows the ultrasonic absorption coefficient of biological tissues to be measured with 1% accuracy. This apparatus is based on a pulse transmission method in which a computer-controlled mode of operation is combined with a RF substitution technique. Superheterodyne detection of the transmitted signal, multiple data recording and signal averaging result in a high sensitivity of the measuring method. The apparatus can be also used to analyze the ultrasonic pulse reflected by the sample.  相似文献   

11.
介绍了一种快速热声层析成像方法和装置,成功实现了生物组织的二维热声层析成像及异物检测.实验中采用频率为1.2 GHz的脉冲微波作为激发源,中心频率为3.5 MHz的320振元线性阵列探测器接收热声信号,然后用有限场滤波反投影方法重建得到热声层析图像.与原有方法相比,勿需全方位扫描采集数据,能大量节省时间,重建图像的对比度和抗噪声能力有极大提高.该方法和系统有望应用于乳腺癌早期检测、体内异物检测、微波热疗效果监测等方面.  相似文献   

12.
A recent study raised concern about increase of resting blood pressure after a 35 min exposure to the radiofrequency (RF) field emitted by a 900 MHz cellular phone. In this randomized, double blind, placebo controlled crossover trial, 32 healthy subjects were submitted to 900 MHz (2 W), 1800 MHz (1 W) cellular phone exposure, and to sham exposure in separate sessions. Arterial blood pressure (arm cuff method) and heart rate were measured during and after the 35 min RF and sham exposure sessions. We evaluated cardiovascular responses in terms of blood pressure and heart rate during controlled breathing, spontaneous breathing, head-up tilt table test, Valsalva manoeuvre and deep breathing test. Arterial blood pressure and heart rate did not change significantly during or after the 35 min RF exposures at 900 MHz or 1800 MHz, compared to sham exposure. The results of this study indicate that exposure to a cellular phone, using 900 MHz or 1800 MHz with maximal allowed antenna powers, does not acutely change arterial blood pressure and heart rate.  相似文献   

13.
Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p<0.001). In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.  相似文献   

14.
Recently, many studies have been carried out in relation to 900 MHz radiofrequency radiation (RF) emitted from a mobile phone on the brain. However, there is little data concerning possible mechanisms between long-term exposure of RF radiation and biomolecules in brain. Therefore, we aimed to investigate long-term effects of 900 MHz radiofrequency radiation on beta amyloid protein, protein carbonyl, and malondialdehyde in the rat brain. The study was carried out on 17 Wistar Albino adult male rats. The rat heads in a carousel were exposed to 900 MHz radiofrequency radiation emitted from a generator, simulating mobile phones. For the study group (n: 10), rats were exposed to the radiation 2 h per day (7 days a week) for 10 months. For the sham group (n: 7), rats were placed into the carousel and the same procedure was applied except that the generator was turned off. In this study, rats were euthanized after 10 months of exposure and their brains were removed. Beta amyloid protein, protein carbonyl, and malondialdehyde levels were found to be higher in the brain of rats exposed to 900 MHz radiofrequency radiation. However, only the increase of protein carbonyl in the brain of rats exposed to 900 MHz radiofrequency radiation was found to be statistically significant (p < 0.001).

In conclusion, 900 MHz radiation emitted from mobile/cellular phones can be an agent to alter some biomolecules such as protein. However, further studies are necessary.  相似文献   

15.
Bahr A  Dorn H  Bolz T 《Bioelectromagnetics》2006,27(4):320-327
An exposure system for investigation of volunteers during simulated GSM and WCDMA mobile phone usage has been designed. The apparatus consists of a dual band antenna with enhanced carrying properties that enables exposure for at least 8 h a day. For GSM a 900 MHz pulse modulated carrier was used. The QPSK modulated WCDMA signal at 1966 MHz comprises a power control scheme, which was designed for investigations of biological effects. The dosimetry of the exposure system by measurements and calculations is described in detail within this paper. It is shown that the SAR distribution of the antenna shows similar characteristics to mobile phones with an integrated antenna. The 10 g averaged localized SAR, normalized to an antenna input power of 1 W and measured in the flat phantom area of the SAM phantom, amounts to 7.82 mW/g (900 MHz) and 10.98 mW/g (1966 MHz). The simulated SAR(10 g) in the Visible Human head model agrees with measured values to within 20%. A variation of the antenna rotation angle results in an SAR(10 g) change below 17%. The increase of the antenna distance by 2 mm with respect to the human head leads to an SAR(10 g) change of 9%.  相似文献   

16.
The effect of microwave radiation on a complex plasma produced by an external ionizer is studied using numerical simulations. It is shown that, as the radiation intensity increases, the scattering of the incident radiation by charged metal grains is enhanced and radiation at the second harmonic of the incident radiation appears in the scattered spectrum. This effect is associated with the grain charge oscillations caused by the nonlinear action of the microwave field. It is found that, under the action of strong microwave radiation, the grain charge can increase by one order of magnitude. It is shown that, when the microwave intensity is high enough, the distribution of the electric field near a dust grain is shown to change so radically that the field component normal to the grain surface can even change its sign.  相似文献   

17.
The responses of 682 single-units in the inferior colliculus (IC) of 13 mustached bats (Pteronotus parnellii parnellii) were measured using pure tones (CF), frequency modulations (FM) and pairs of CF-FM signals mimicking the species' biosonar signal, which are stimuli known to be essential to the responses of CF/CF and FM-FM facilitation neurons in auditory cortex. Units were arbitrarily classified into 'reference frequency' (RF), 'FM2' and 'Non-echolocation' (NE) categories according to the relationship of their best frequencies (BF) to the biosonar signal frequencies. RF units have high Q10dB values and are tuned to the reference frequency of each bat, which ranged between 60.73 and 62.73 kHz. FM2 units had BF's between 50 and 60 kHz, while NE units had BF's outside the ranges of the RF and FM2 classes. PST histograms of the responses revealed discharge patterns such as 'onset', 'onset-bursting' (most common), 'on-off', 'tonic-on','pauser', and 'chopper'. Changes in discharge patterns usually resulted from changes in the frequency and/or intensity of the stimuli, most often involving a change from onset-bursting to on-off. Different patterns were also elicited by CF and FM stimuli. Frequency characteristics and thresholds to CF and FM stimuli were measured. RF neurons were very sharply tuned with Q10dB's ranging from 50-360. Most (92%) also responded to FM2 stimuli, but 78% were significantly more sensitive (greater than 5 dB) to CF stimuli, and only 3% had significantly lower thresholds to FM2. The best initial frequency for FM2 sweeps in RF units was 65.35 +/- 2.138 kHz (n = 118), well above the natural frequency of the 2nd harmonic. FM2 and NE units were indistinguishable from each other, but were quite different from RF units: 41% of these two classes had lower thresholds to CF, 49% were about equally sensitive, and 10% had lower thresholds to FM. For FM2 units, mean best initial frequency for FM was 60.94 kHz +/- 3.162 kHz (n = 114), which is closely matched to the 2nd harmonic in the biosonar signal. Very few units (5) responded only to FM signals, i.e., were FM-specialized. The characteristics of spike-count functions were determined in 587 units. The vast majority (79%) of RF units (n = 228) were nonmonotonic, and about 22% had upper-thresholds.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
Bioeffects of microwave--a brief review   总被引:25,自引:0,他引:25  
Since the 18th century scientists have been intrigued by the interaction of electromagnetic fields (EMFs) and various life processes. Attention has been focussed on EMFs in different frequency ranges, of which microwave frequency range forms an important part. Microwaves are part of the electromagnetic spectrum and are considered to be that radiation ranging in frequency from 300 million cycles per second (300 MHz) to 300 billion cycles per second (300 GHz), which correspond to a wavelength range of 1 m down to 1 mm. This nonionising electromagnetic radiation is absorbed at molecular level and manifests as changes in vibrational energy of the molecules or heat (Microwaves irradiating the community, Hidden hazards, Bantan Books publisher, Australia, 1991). Identifying and evaluating the biological effects of microwaves have been complex and controversial. Because of the paucity of information on the mechanism of interaction between microwave and biological systems, there has been a persistent view in physical and engineering sciences, that microwave fields are incapable of inducing bioeffects other than by heating (Health Physics 61 (1991) 3). Of late, the nonthermal effects of microwaves on tissue responses are being documented (Physiol. Rev. 61 (1981) 435; Annals of New York Acad. Sci. 247 (1975) 232; J. Microwave Power 14 (1979) 351; Bioelectromagnetics 7 (1986a) 45; Bioelectromagnetics 7 (1986b) 315; Biologic Effects and Health Hazards of Microwave Radiation, Warsaw, Polish Medical Publication (1974) 289; Biologic Effects and Health hazards of the microwave Radiation, Warsaw, Polish Medical Publication (1974) 22; Multidisciplinory perspectives in event-related brain potential research, Washington DC, US Environmental Protection Agency, (1978) 444). The present article is an attempt to familiarise the reader with pertinent information regarding the effects, mainly athermal, of microwave irradiation on biologic systems, especially microorganisms.  相似文献   

19.
The purpose of this study is to bridge this gap by investigating effects of long term 900?MHz mobile phone exposure on reproductive organs of male rats. The study was carried out on 14 adult Wistar Albino rats by dividing them randomly into two groups (n: 7) as sham group and exposure group. Rats were exposed to 900?MHz radiofrequency (RF) radiation emitted from a GSM signal generator. Point, 1?g and 10?g specific absorption rate (SAR) levels of testis and prostate were found as 0.0623?W/kg, 0.0445?W/kg and 0.0373?W/kg, respectively. The rats in the exposure group were subject to RF radiation 3?h per day (7?d a week) for one year. For the sham group, the same procedure was applied, except the generator was turned off. At the end of the study, epididymal sperm concentration, progressive sperm motility, abnormal sperm rate, all-genital organs weights and testis histopathology were evaluated. Any differences were not observed in sperm motility and concentration (p?>?0.05). However, the morphologically normal spermatozoa rates were found higher in the exposure group (p?p?p?相似文献   

20.
Although in vitro studies have been previously conducted to determine the biological effects of radio frequency (RF) radiation, it has not yet been determined whether or not RF radiation poses a potential hazard. This study was conducted to determine whether RF radiation exposure exerts detectable effects on cell cycle distribution, cellular invasion, and migration. NIH3T3 mouse fibroblasts were exposed to 849 MHz of RF radiation at average SAR values of 2 or 10 W/kg for either 1 h, or for 1 h per day for 3 days. During the exposure period, the temperature in the exposure chamber was maintained isothermally by circulating water throughout the cavity. Cell cycle distribution was analyzed at 24 and 48 h after exposure, by flow cytometry. We detected no statistically significant differences between the sham-exposed and RF radiation-exposed cells. Cellular invasion and migration were assessed by in vitro Matrigel invasion and Transwell migration assays. The RF radiation-exposed groups evidenced no significant changes in motility and invasiveness compared to the sham-exposed group. However, the ionizing radiation-exposed cells, used as a positive control group, manifested dramatic alterations in their cell cycle distribution, cellular invasiveness, and migration characteristics. Our results show that 849 MHz RF radiation exposure exerts no detectable effects on cell cycle distribution, cellular migration, or invasion at average SAR values of 2 or 10 W/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号