首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial fission is achieved partially by the activity of self-assembling dynamin-related proteins (DRPs) in diverse organisms. Mitochondrial fission in Arabidopsis thaliana is mediated by DRP3A and DRP3B, but the other genes and molecular mechanisms involved have yet to be elucidated. To identify these genes, we screened and analyzed Arabidopsis mutants with longer and fewer mitochondria than those of the wild type. ELM1 was found to be responsible for the phenotype of elongated mitochondria. This phenotype was also observed in drp3a plants. EST and genomic sequences similar to ELM1 were found in seed plants but not in other eukaryotes. ELM1:green fluorescent protein (GFP) was found to surround mitochondria, and ELM1 interacts with both DPR3A and DRP3B. In the elm1 mutant, DRP3A:GFP was observed in the cytosol, whereas in wild-type Arabidopsis, DRP3A:GFP localized to the ends and constricted sites of mitochondria. These results collectively suggest that mitochondrial fission in Arabidopsis is mediated by the plant-specific factor ELM1, which is required for the relocalization of DRP3A (and possibly also DRP3B) from the cytosol to mitochondrial fission sites.  相似文献   

2.
Peroxisomes are multi-functional organelles that differ in size and abundance depending on the species, cell type, developmental stage, and metabolic and environmental conditions. The PEROXIN11 protein family and the DYNAMIN-RELATED PROTEIN3A (DRP3A) protein have been shown previously to play key roles in peroxisome division in Arabidopsis. To establish a mechanistic model of peroxisome division in plants, we employed forward and reverse genetic approaches to identify more proteins involved in this process. In this study, we identified three new components of the Arabidopsis peroxisome division apparatus: DRP3B, a homolog of DRP3A, and FISSION1A and 1B (FIS1A and 1B), two homologs of the yeast and mammalian FIS1 proteins that mediate the fission of peroxisomes and mitochondria by tethering the DRP proteins to the membrane. DRP3B is partially targeted to peroxisomes and causes defects in peroxisome fission when the gene function is disrupted. drp3A drp3B double mutants display stronger deficiencies than each single mutant parent with respect to peroxisome abundance, seedling establishment and plant growth, suggesting partial functional redundancy between DRP3A and DRP3B. In addition, FIS1A and FIS1B are each dual-targeted to peroxisomes and mitochondria; their mutants show growth inhibition and contain peroxisomes and mitochondria with incomplete fission, enlarged size and reduced number. Our results demonstrate that both DRP3 and FIS1 protein families contribute to peroxisome fission in Arabidopsis, and support the view that DRP and FIS1 orthologs are common components of the peroxisomal and mitochondrial division machineries in diverse eukaryotic species.  相似文献   

3.
Mitochondrial fragmentation is recognized to be an important event during the onset of apoptosis. In this current study, we have used single cell imaging to investigate the role of the mitochondrial fission protein DRP‐1 on mitochondrial morphology and mitochondrial fragmentation in primary hippocampal neurons undergoing necrotic or apoptotic cell death. Treatment of neurons with 500 nM staurosporine (apoptosis) or 30 μM glutamate (l ‐Glu; excitotoxic necrosis) produced a fragmentation and condensation of mitochondria, which although occurred over markedly different time frames appeared broadly similar in appearance. In neurons exposed to an apoptotic stimuli, inhibiting DRP‐1 activity using overexpression of the dominant negative DRP‐1K38A slowed the rate of mitochondrial fragmentation and decreased total cell death when compared to overexpression of wild‐type DRP‐1. In contrast, responses to l ‐Glu appeared DRP‐1 independent. Similarly, alterations in the fission/fusion state of the mitochondrial network did not alter mitochondrial Ca2+ uptake or the ability of l ‐Glu to stimulate excitotoxic Ca2+ overload. Finally, apoptosis‐induced mitochondrial fragmentation was observed concurrent with recruitment of Bax to the mitochondrial membrane. In contrast, during glutamate excitotoxicity, Bax remained in the cytosolic compartment. We conclude that different pathways lead to the appearance of fragmented mitochondria during necrotic and apoptotic neuronal cell death. © 2010 Wiley Periodicals, Inc. J Biochem Mol Toxicol 24:335–341, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.20336  相似文献   

4.
Dynamin-related proteins (DRPs) are key components of the organelle division machineries, functioning as molecular scissors during the fission process. In Arabidopsis, DRP3A and DRP3B are shared by peroxisomal and mitochondrial division, whereas the structurally-distinct DRP5B (ARC5) protein is involved in the division of chloroplasts and peroxisomes. Here, we further investigated the roles of DRP3A, DRP3B, and DRP5B in organelle division and plant development. Despite DRP5B's lack of stable association with mitochondria, drp5B mutants show defects in mitochondrial division. The drp3A-2 drp3B-2 drp5B-2 triple mutant exhibits enhanced mitochondrial division phenotypes over drp3A-2 drp3B-2, but its peroxisomal morphology and plant growth phenotypes resemble those of the double mutant. We further demonstrated that DRP3A and DRP3B form a supercomplex in vivo, in which DRP3A is the major component, yet DRP5B is not a constituent of this complex. We thus conclude that DRP5B participates in the division of three types of organelles in Arabidopsis, acting independently of the DRP3 complex. Our findings will help elucidate the precise composition of the DRP3 complex at organelle division sites, and will be instrumental to studies aimed at understanding how the same protein mediates the morphogenesis of distinct organelles that are linked by metabolism.  相似文献   

5.
Mitochondria play a critical role in regulation of apoptosis, a form of programmed cell death, by releasing apoptogenic factors including cytochrome c. Growing evidence suggests that dynamic changes in mitochondrial morphology are involved in cellular apoptotic response. However, whether DRP1-mediated mitochondrial fission is required for induction of apoptosis remains speculative. Here, we show that siRNA-mediated DRP1 knockdown promoted accumulation of elongated mitochondria in HCT116 and SW480 human colon cancer cells. Surprisingly, DRP1 down-regulation led to decreased proliferation and increased apoptosis of these cells. A higher rate of cytochrome c release and reductions in mitochondrial membrane potential were also revealed in DRP1-depleted cells. Taken together, our present findings suggest that mitochondrial fission factor DRP1 inhibits colon cancer cell apoptosis through the regulation of cytochrome c release and mitochondrial membrane integrity.  相似文献   

6.
Two similar Arabidopsis dynamin-related proteins, DRP3A and DRP3B, are thought to be key factors in both mitochondrial and peroxisomal fission. However, the functional and genetic relationships between DRP3A and DRP3B have not been fully investigated. In a yeast two-hybrid assay, DRP3A and DRP3B interacted with themselves and with each other. DRP3A and DRP3B localized to mitochondria and peroxisomes, and co-localized with each other in leaf epidermal cells. In two T-DNA insertion mutants, drp3a and drp3b , the mitochondria are a little longer and fewer in number than those in the wild-type cells. In the double mutant, drp3a/drp3b , mitochondria are connected to each other, resulting in massive elongation. Overexpression of either DRP3A or DRP3B in drp3a/drp3b restored the particle shape of mitochondria, suggesting that DRP3A and DRP3B are functionally redundant in mitochondrial fission. In the case of peroxisomal fission, DRP3A and DRP3B appear to have different functions: peroxisomes in drp3a were larger and fewer in number than those in the wild type, whereas peroxisomes in drp3b were as large and as numerous as those in the wild type, and peroxisomes in drp3a/drp3b were as large and as numerous as those in drp3a . Although overexpression of DRP3A in drp3a/drp3b restored the shape and number of peroxisomes, overexpression of DRP3B did not restore the phenotypes, and often caused elongation instead. These results suggest that DRP3B and DRP3A have redundant molecular functions in mitochondrial fission, whereas DRP3B has a minor role in peroxisomal fission that is distinct from that of DRP3A.  相似文献   

7.
Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis   总被引:1,自引:0,他引:1  
Mitochondrial morphology and physiology are regulated by the processes of fusion and fission. Some forms of apoptosis are reported to be associated with mitochondrial fragmentation. We showed that overexpression of Fzo1A/B (rat) proteins involved in mitochondrial fusion, or silencing of Dnm1 (rat)/Drp1 (human) (a mitochondrial fission protein), increased elongated mitochondria in healthy cells. After apoptotic stimulation, these interventions inhibited mitochondrial fragmentation and cell death, suggesting that a process involved in mitochondrial fusion/fission might play a role in the regulation of apoptosis. Consistently, silencing of Fzo1A/B or Mfn1/2 (a human homolog of Fzo1A/B) led to an increase of shorter mitochondria and enhanced apoptotic death. Overexpression of Fzo1 inhibited cytochrome c release and activation of Bax/Bak, as assessed from conformational changes and oligomerization. Silencing of Mfn or Drp1 caused an increase or decrease of mitochondrial sensitivity to apoptotic stimulation, respectively. These results indicate that some of the proteins involved in mitochondrial fusion/fission modulate apoptotic cell death at the mitochondrial level.  相似文献   

8.
Mitochondria display a variety of shapes, ranging from small and spherical or the classical tubular shape to extended networks. Shape transitions occur frequently and include fusion, fission, and branching. It was reported that some mitochondrial shape transitions are developmentally regulated, whereas others were linked to disease or apoptosis. However, if and how mitochondrial function controls mitochondrial shape through regulation of mitochondrial fission and fusion is unclear. Here, we show that inhibitors of electron transport, ATP synthase, or the permeability transition pore (mtPTP) induced reversible mitochondrial fission. Mitochondrial fission depended on dynamin-related protein 1 (DRP1) and F-actin: Disruption of F-actin attenuated fission and recruitment of DRP1 to mitochondria. In contrast, uncoupling of electron transport and oxidative phosphorylation caused mitochondria to adopt a distinct disk shape. This shape change was independent of the cytoskeleton and DRP1 and was most likely caused by swelling. Thus, disruption of mitochondrial function rapidly and reversibly altered mitochondrial shape either by activation of DRP1-dependent fission or by swelling, indicating a close relationship between mitochondrial fission, shape, and function. Furthermore, our results suggest that the actin cytoskeleton is involved in mitochondrial fission by facilitating mitochondrial recruitment of DRP1.  相似文献   

9.
Dynamin-related protein 1 (DRP1) plays an important role in mitochondrial fission at steady state and during apoptosis. Using fluorescence recovery after photobleaching, we demonstrate that in healthy cells, yellow fluorescent protein (YFP)-DRP1 recycles between the cytoplasm and mitochondria with a half-time of 50 s. Strikingly, during apoptotic cell death, YFP-DRP1 undergoes a transition from rapid recycling to stable membrane association. The rapid cycling phase that characterizes the early stages of apoptosis is independent of Bax/Bak. However, after Bax recruitment to the mitochondrial membranes but before the loss of mitochondrial membrane potential, YFP-DRP1 becomes locked on the membrane, resulting in undetectable fluorescence recovery. This second phase in DRP1 cycling is dependent on the presence of Bax/Bak but independent of hFis1 and mitochondrial fragmentation. Coincident with Bax activation, we detect a Bax/Bak-dependent stimulation of small ubiquitin-like modifier-1 conjugation to DRP1, a modification that correlates with the stable association of DRP1 with mitochondrial membranes. Altogether, these data demonstrate that the apoptotic machinery regulates the biochemical properties of DRP1 during cell death.  相似文献   

10.
RALA and RALBP1 regulate mitochondrial fission at mitosis   总被引:2,自引:0,他引:2  
Mitochondria exist as dynamic interconnected networks that are maintained through a balance of fusion and fission. Equal distribution of mitochondria to daughter cells during mitosis requires fission. Mitotic mitochondrial fission depends on both the relocalization of the large GTPase DRP1 to the outer mitochondrial membrane and phosphorylation of Ser 616 on DRP1 by the mitotic kinase cyclin B-CDK1 (ref. 2). We now report that these processes are mediated by the small Ras-like GTPase RALA and its effector RALBP1 (also known as RLIP76, RLIP1 or RIP1; refs 3, 4). Specifically, the mitotic kinase Aurora A phosphorylates Ser 194 of RALA, relocalizing it to the mitochondria, where it concentrates RALBP1 and DRP1. Furthermore, RALBP1 is associated with cyclin B-CDK1 kinase activity that leads to phosphorylation of DRP1 on Ser 616. Disrupting either RALA or RALBP1 leads to a loss of mitochondrial fission at mitosis, improper segregation of mitochondria during cytokinesis and a decrease in ATP levels and cell number. Thus, the two mitotic kinases Aurora A and cyclin B-CDK1 converge on RALA and RALBP1 to promote mitochondrial fission, the appropriate distribution of mitochondria to daughter cells and ultimately proper mitochondrial function.  相似文献   

11.
Peroxisomes are highly dynamic organelles involved in various metabolic pathways. The division of peroxisomes is regulated by factors such as the PEROXIN11 (PEX11) proteins that promote peroxisome elongation and the dynamin-related proteins (DRPs) and FISSION1 (FIS1) proteins that function together to mediate organelle fission. In Arabidopsis thaliana, DRP3A/DRP3B and FIS1A (BIGYIN)/FIS1B are two pairs of homologous proteins known to function in both peroxisomal and mitochondrial division. Here, we report that DRP5B, a DRP distantly related to the DRP3s and originally identified as a chloroplast division protein, also contributes to peroxisome division. DRP5B localizes to both peroxisomes and chloroplasts. Mutations in the DRP5B gene lead to peroxisome division defects and compromised peroxisome functions. Using coimmunoprecipitation and bimolecular fluorescence complementation assays, we further demonstrate that DRP5B can interact or form a complex with itself and with DRP3A, DRP3B, FIS1A, and most of the Arabidopsis PEX11 isoforms. Our data suggest that, in contrast with DRP3A and DRP3B, whose orthologs exist across plant, fungal, and animal kingdoms, DRP5B is a plant/algal invention to facilitate the division of their organelles (i.e., chloroplasts and peroxisomes). In addition, our results support the notion that proteins involved in the early (elongation) and late (fission) stages of peroxisome division may act cooperatively.  相似文献   

12.
The balance between mitochondrial fission and fusion is disrupted during mitosis, but the mechanism governing this phenomenon in plant cells remains enigmatic. Here, we used mitochondrial matrix‐localized Kaede protein (mt‐Kaede) to analyze the dynamics of mitochondrial fission in BY‐2 suspension cells. Analysis of the photoactivatable fluorescence of mt‐Kaede suggested that the fission process is dominant during mitosis. This finding was confirmed by an electron microscopic analysis of the size distribution of mitochondria in BY‐2 suspension cells at various stages. Cellular proteins interacting with Myc‐tagged dynamin‐related protein 3A/3B (AtDRP3A and AtDRP3B) were immunoprecipitated with anti‐Myc antibody‐conjugated beads and subsequently identified by microcapillary liquid chromatography–quadrupole time‐of‐flight mass spectrometry (CapLC Q‐TOF) MS/MS. The identified proteins were broadly associated with cytoskeletal (microtubular), phosphorylation, or ubiquitination functions. Mitotic phosphorylation of AtDRP3A/AtDRP3B and mitochondrial fission at metaphase were inhibited by treatment of the cells with a CdkB/cyclin B inhibitor or a serine/threonine protein kinase inhibitor. The fate of AtDRP3A/3B during the cell cycle was followed by time‐lapse imaging of the fluorescence of Dendra2‐tagged AtDRP3A/3B after green‐to‐red photoconversion; this experiment showed that AtDRP3A/3B is partially degraded during interphase. Additionally, we found that microtubules are involved in mitochondrial fission during mitosis, and that mitochondria movement to daughter cell was limited as early as metaphase. Taken together, these findings suggest that mitotic phosphorylation of AtDRP3A/3B promotes mitochondrial fission during plant cell mitosis, and that AtDRP3A/3B is partially degraded at interphase, providing mechanistic insight into the mitochondrial morphological changes associated with cell‐cycle transitions in BY‐2 suspension cells.  相似文献   

13.
We screened for mutants of Arabidopsis thaliana that displayed enhanced disease resistance to the powdery mildew pathogen Erysiphe cichoracearum and identified the edr3 mutant, which formed large gray lesions upon infection with E. cichoracearum and supported very little sporulation. The edr3-mediated disease resistance and cell death phenotypes were dependent on salicylic acid signaling, but independent of ethylene and jasmonic acid signaling. In addition, edr3 plants displayed enhanced susceptibility to the necrotrophic fungal pathogen Botrytis cinerea, but showed normal responses to virulent and avirulent strains of Pseudomonas syringae pv. tomato. The EDR3 gene was isolated by positional cloning and found to encode Arabidopsis dynamin-related protein 1E (DRP1E). The edr3 mutation caused an amino acid substitution in the GTPase domain of DRP1E (proline 77 to leucine) that is predicted to block GTP hydrolysis, but not GTP binding. A T-DNA insertion allele in DRP1E did not cause powdery mildew-induced lesions, suggesting that this phenotype is caused by DRP1E being locked in the GTP-bound state, rather than by a loss of DRP1E activity. Analysis of DRP1E-green fluorescent protein fusion proteins revealed that DRP1E is at least partially localized to mitochondria. These observations suggest a mechanistic link between salicylic acid signaling, mitochondria and programmed cell death in plants.  相似文献   

14.
BH3 only proteins trigger cell death by interacting with pro- and anti-apoptotic members of the BCL-2 family of proteins. Here we report that BH3 peptides corresponding to the death domain of BH3-only proteins, which bind all the pro-survival BCL-2 family proteins, induce cell death in the absence of BAX and BAK. The BH3 peptides did not cause the release of cytochrome c from isolated mitochondria or from mitochondria in cells. However, the BH3 peptides did cause a decrease in mitochondrial membrane potential but did not induce the opening of the mitochondrial permeability transition pore. Interestingly, the BH3 peptides induced mitochondria to undergo fission in the absence of BAX and BAK. The binding of BCL-XL with dynamin-related protein 1 (DRP1), a GTPase known to regulate mitochondrial fission, increased in the presence of BH3 peptides. These results suggest that pro-survival BCL-2 proteins regulate mitochondrial fission and cell death in the absence of BAX and BAK.  相似文献   

15.
Aung K  Hu J 《The Plant cell》2011,23(12):4446-4461
Peroxisomes and mitochondria are multifunctional eukaryotic organelles that are not only interconnected metabolically but also share proteins in division. Two evolutionarily conserved division factors, dynamin-related protein (DRP) and its organelle anchor FISSION1 (FIS1), mediate the fission of both peroxisomes and mitochondria. Here, we identified and characterized a plant-specific protein shared by these two types of organelles. The Arabidopsis thaliana PEROXISOMAL and MITOCHONDRIAL DIVISION FACTOR1 (PMD1) is a coiled-coil protein tethered to the membranes of peroxisomes and mitochondria by its C terminus. Null mutants of PMD1 contain enlarged peroxisomes and elongated mitochondria, and plants overexpressing PMD1 have an increased number of these organelles that are smaller in size and often aggregated. PMD1 lacks physical interaction with the known division proteins DRP3 and FIS1; it is also not required for DRP3's organelle targeting. Affinity purifications pulled down PMD1's homolog, PMD2, which exclusively targets to mitochondria and plays a specific role in mitochondrial morphogenesis. PMD1 and PMD2 can form homo- and heterocomplexes. Organelle targeting signals reside in the C termini of these proteins. Our results suggest that PMD1 facilitates peroxisomal and mitochondrial proliferation in a FIS1/DRP3-independent manner and that the homologous proteins PMD1 and PMD2 perform nonredundant functions in organelle morphogenesis.  相似文献   

16.
Tanaka A  Youle RJ 《Molecular cell》2008,29(4):409-410
DRP1, a member of the dynamin family of large GTPases, mediates mitochondrial fission. In a recent issue of Developmental Cell, Cassidy-Stone et al. (2008) identified mdivi-1, a new DRP1 inhibitor that prevents mitochondria division and Bax-mediated mitochondrial outer membrane permeabilization during apoptosis.  相似文献   

17.
Mitochondrial fragmentation due to imbalanced fission and fusion of mitochondria is a prerequisite for mitophagy, however, the exact “coupling” of mitochondrial dynamics and mitophagy remains unclear. We have previously identified that FUNDC1 recruits MAP1LC3B/LC3B (LC3) through its LC3-interacting region (LIR) motif to initiate mitophagy in mammalian cells. Here, we show that FUNDC1 interacts with both DNM1L/DRP1 and OPA1 to coordinate mitochondrial fission or fusion and mitophagy. OPA1 interacted with FUNDC1 via its Lys70 (K70) residue, and mutation of K70 to Ala (A), but not to Arg (R), abolished the interaction and promoted mitochondrial fission and mitophagy. Mitochondrial stress such as selenite or FCCP treatment caused the disassembly of the FUNDC1-OPA1 complex while enhancing DNM1L recruitment to the mitochondria. Furthermore, we observed that dephosphorylation of FUNDC1 under stress conditions promotes the dissociation of FUNDC1 from OPA1 and association with DNM1L. Our data suggest that FUNDC1 regulates both mitochondrial fission or fusion and mitophagy and mediates the “coupling” across the double membrane for mitochondrial dynamics and quality control.  相似文献   

18.
hFis1, a novel component of the mammalian mitochondrial fission machinery   总被引:25,自引:0,他引:25  
The balance between the fission and fusion mechanisms regulate the morphology of mitochondria. In this study we have identified a mammalian protein that we call hFis1, which is the orthologue of the yeast Fis1p known to participate in yeast mitochondrial division. hFis1, when overexpressed in various cell types, localized to the outer mitochondrial membrane and induced mitochondrial fission. This event was inhibited by a dominant negative mutant of Drp1 (Drp1(K38A)), a major component of the fission apparatus. Fragmentation of the mitochondrial network by hFis1 was followed by the release of cytochrome c and ultimately apoptosis. Bcl-xL was able to block cytochrome c release and apoptosis but failed to prevent mitochondrial fragmentation. Our studies show that hFis1 is part of the mammalian fission machinery and suggest that regulation of the fission processes might be involved in apoptotic mechanisms.  相似文献   

19.
Peroxisomes undergo dramatic changes in size, shape, number, and position within the cell, but the division process of peroxisomes has not been characterized. We screened a number of Arabidopsis mutants with aberrant peroxisome morphology (apm mutants). In one of these mutants, apm1, the peroxisomes are long and reduced in number, apparently as a result of inhibition of division. We showed that APM1 encodes dynamin-related protein 3A (DRP3A), and that mutations in APM1/DRP3A also caused aberrant morphology of mitochondria. The transient expression analysis showed that DRP3A is associated with the cytosolic side of peroxisomes. These findings indicate that the same dynamin molecule is involved in peroxisomal and mitochondrial division in higher plants. We also report that the growth of Arabidopsis, which requires the cooperation of various organelles, including peroxisomes and mitochondria, is repressed in apm1, indicating that the changes of morphology of peroxisomes and mitochondria reduce the efficiency of metabolism in these organelles.  相似文献   

20.
Mitochondrial fission ensures organelle inheritance during cell division and participates in apoptosis. The fission protein hFis1 triggers caspase-dependent cell death, by causing the release of cytochrome c from mitochondria. Here we show that mitochondrial fission induced by hFis1 is genetically distinct from apoptosis. In cells lacking the multidomain proapoptotic Bcl-2 family members Bax and Bak (DKO), hFis1 caused mitochondrial fragmentation but not organelle dysfunction and apoptosis. Similarly, a mutant in the intermembrane region of hFis1-induced fission but not cell death, further dissociating mitochondrial fragmentation from apoptosis induction. Selective correction of the endoplasmic reticulum (ER) defect of DKO cells restored killing by hFis1, indicating that death by hFis1 relies on the ER gateway of apoptosis. Consistently, hFis1 did not directly activate BAX and BAK, but induced Ca(2+)-dependent mitochondrial dysfunction. Thus, hFis1 is a bifunctional protein that independently regulates mitochondrial fragmentation and ER-mediated apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号