首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Recent laboratory studies of mass‐reared flies in small cages have found that periods of just 24‐ or 48‐h access to yeast hydrolysate can substantially enhance mating performance of mass‐reared male Queensland fruit flies, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) (‘Q‐flies’). Using field cage tests that provide a better approximation of nature, we here investigated whether access to yeast hydrolysate for 48 h after adult emergence improves the ability of male and female mass‐reared, sterile Q‐flies to compete sexually with wild‐type flies that had been provided continuous access to yeast hydrolysate. Mating probability of sterile males was significantly increased by 48‐h access to yeast hydrolysate; sterile males provided 48‐h access to yeast hydrolysate had mating probability similar to that of wild males provided continuous access to yeast hydrolysate, whereas sterile males deprived of access to yeast hydrolysate had much lower mating probability. Unlike males, access to yeast hydrolysate for 48 h did not increase mating probability of sterile female Q‐flies. We instead found that wild females provided continuous access to yeast hydrolysate had higher mating probability than sterile females that did or did not have 48‐h access to yeast hydrolysate. This result raises the possibility that a bisexual Q‐fly strain might operate essentially as a male‐only release when the flies are given access to yeast hydrolysate during a 48‐h pre‐release holding period. Sterile males given access to yeast hydrolysate for 48 h mated significantly earlier in the evening than wild males and, as in other recent studies, this tendency was associated with an increased tendency to mate on the trees rather than the cage walls. There was no evidence of sexual isolation in this study, as wild and sterile mass‐reared flies showed no evidence of preferential mating with their own kind. Further studies are now needed to assess the potential for pre‐release access to yeast hydrolysate to improve sexual performance and longevity of sterile, mass‐reared, Q‐flies in the field.  相似文献   

2.
Mass‐reared sterile tephritid flies released in sterile insect technique (SIT) programmes exhibit behaviour, physiology and longevity that often differ from their wild counterparts. In the present study, video recordings of flies in laboratory cages are used to determine whether the sequential processes of mass‐rearing and sterilization (using gamma radiation) that are integral to SIT affect general activity patterns of male and female Queensland fruit flies Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) (‘Q‐flies'). Compared with wild flies, mass‐reared flies exhibit a marked reduction in overall activity, and further reduction is found after sterilization. In terms of the frequency of activities, both fertile and sterile mass‐reared Q‐flies fly less often and exhibit more bouts of inactivity and grooming than wild Q‐flies. In addition, in terms of the duration of activities, fertile and sterile mass‐reared Q‐flies spend less time flying and more time walking, grooming and being inactive than wild Q‐flies. Although fertile and sterile mass‐reared flies are similar in other regards, sterile mass‐reared flies spend more time being inactive than fertile mass‐reared flies. These findings raise new questions about how changes in behaviour and activity levels may influence the performance of mass‐reared sterile Q‐flies in the field, as well as the physiological and metabolic processes that are involved. The frequency and duration of inactivity could provide a simple but powerful and biologically relevant test for quality in mass‐rearing and SIT programs.  相似文献   

3.
Wild strains of fruit flies (Diptera: Tephritidae) placed into laboratory rearing conditions are subjected to selection pressures caused by the diet, cages, density of flies, and other factors. Selection that changes mating behavior of the strain may result in less effective males released in sterile insect programs. Tests were performed to examine the effects of protein in diet and adult interactions on egg production and mating during sexual maturation of the Mexican fruit fly (Anastrepha ludens Loew) in laboratory cages. Flies were offspring of wild flies collected from Chiapas or Nuevo Leon, Mexico, and reared on Valencia oranges. Experiments demonstrated effects of yeast hydrolysate protein in adult diet and pairing with males on production of mature and immature eggs, numbers of females producing eggs, and mating with females aged 15 d. Addition of protein to 4% fructose in the adult diet approximately tripled mature egg production in females maintained for the total maturation period with an equal number of males. Females that matured without males produced approximately 33% more-mature eggs when fed protein than those fed no protein. Total egg production of females matured without males and fed sugar only or sugar with protein was more than twice that of females matured with males. Tests to examine the effects of male and female diet separately on female egg production showed slightly higher egg production in females fed protein, or females paired with males fed protein, but these differences were not significant. The most definitive effects were that combining wild strain females and males in cages during maturation reduced egg production. This effect was greatest when flies were not fed protein.  相似文献   

4.
Post‐teneral diets containing yeast hydrolysate are reported to increase longevity, reproductive development and sexual performance of Queensland fruit fly (‘Q‐fly’) Bactrocera tryoni Froggatt (Diptera: Tephritidae). Consequently, diets including yeast hydrolysate are recommended for sterile Q‐flies before release in sterile insect technique (SIT) programmes. However, in some tephritids, diets including yeast hydrolysate are associated with an increased vulnerability to starvation. In the present study, the effects of yeast hydrolysate supplementation before release are considered with respect to the longevity of released Q‐fly when food becomes scarce. Experiments are carried out in three settings of varying resemblance to field conditions: 5‐L laboratory cages, 107‐L outdoor cages and 14 140‐L field cages containing potted citrus trees. In all experimental settings, compared with flies that received only sucrose, male and female Q‐flies that are provided with yeast hydrolysate during the first 2 days of adult life have a significantly shorter survival when subsequently deprived of food. Yeast supplementation appears to commit Q‐flies to a developmental trajectory that renders them more vulnerable to starvation. The practical significance of these findings for SIT depends on how often the releases are carried out under conditions in which Q‐flies experience extreme food shortages in the field.  相似文献   

5.
Life‐history parameters and the fitness of tephritid flies are closely linked to diet. Studies of locomotor behaviour can provide insights to these links, although little is known about how locomotor behaviour is influenced by diet. In the present study, video recordings of Queensland fruit flies Bactrocera tryoni Froggatt (Diptera: Tephritidae) (‘Q‐flies’) that are maintained individually in cages are used to determine how diet affects the activity patterns (flight, walking, grooming, inactivity) of males and females at ages ranging from 4 to 30 days. The frequency and total duration of activities over 10‐min trials are affected by diet, age and sex. Supplementation of diet with hydrolysed yeast results in a higher frequency and duration of flight in flies of all ages and both sexes. The effect of diet on other activities varies with age. Q‐flies fed sugar only increase walking frequency steadily from 4 to 30 days post‐eclosion, whereas flies fed sugar + yeast have higher walking frequencies at 4 and 10 days than flies fed sugar only, although they then exhibit a sharp decline at 30 days post‐eclosion. The frequency and duration of inactivity remain consistent in flies fed sugar + yeast, whereas flies fed sugar only exhibit a marked increase in inactivity from 4 to 30 days post‐eclosion. Compared with older flies, 4 day‐old Q‐flies fed sugar only spend considerably more time grooming. The potential of activity monitoring as a quality control test for flies that are mass‐reared for use in sterile insect technique programmes is discussed.  相似文献   

6.
Queensland fruit fly [Bactrocera tryoni (Froggatt), Diptera, Tephritidae] is the most devastating insect pest impacting Australian horticulture. The Sterile Insect Technique (SIT) is an important component of tephritid pest management programs. However, mass‐rearing and irradiation (to render insects sterile) may reduce the fitness and performance of the insect, including the ability of sterile males to successfully compete for wild females. Manipulation of the gut microbiome, including the supplementation with bacterial probiotics shows promise for enhancing the quality of mass‐reared sterile flies, however there are fewer published studies targeting the larval stage. In this study, we supplemented the larval stage of mass‐reared B. tryoni with bacterial probiotics. We tested several individual bacteria that had been previously isolated and characterized from the gut of wild B. tryoni larvae including Asaia sp., Enterobacter sp., Lactobacillus sp., Leuconostoc sp. We also tested a consortium of all four of these bacterial isolates. The fitness parameters tested included adult survival in field cages, laboratory mate selection of bacteria supplemented males by bacteria nonsupplemented females, and laboratory locomotor activity of adult flies. None of the bacterial probiotic treatments in the current study was significantly different to the control for field survival, mate selection or locomotor activity of adult B. tryoni, which agree with some of the other studies regarding bacterial probiotics fed to the larval stage of tephritids. Future work is needed to determine if feeding the same, and/or other probiotics to adults, as opposed to larvae can positively impact survival, mating performance, mating competitiveness and locomotor activity of B. tryoni. The bacterial group(s) and function of bacterial species that increase fitness and competitiveness is also of interest to tephritid mass‐rearing programs.  相似文献   

7.
Abstract.  Adult diet is an important determinant of sexual activity in many tephritid fruit flies. Whether availability of protein (hydrolysed yeast) in addition to sucrose influences sexual activity or longevity of male and female Queensland fruit flies ( Bactrocera tryoni Froggatt, 'Q-flies'), and whether irradiation of flies as pupae modifies their dietary needs, is investigated. Previous studies on groups of flies suggest that protein is required for sexual maturation of females but not males. By contrast, this study of individual flies demonstrates that protein in the adult diet provides a massive boost to sexual activity of both males and females. Mating probability increases with age from 4-14 days as the flies began to mature. However, mating probability reaches much higher levels when the flies are provided with protein. Although males and females mate at similar rates when provided with protein, females suffer a greater reduction in mating probability than males when deprived of protein. In addition to increased mating probability, access to dietary protein is also associated with reduced latency from onset of dusk until copulation. Furthermore, young male flies with access to dietary protein have longer copula duration than males fed only sucrose. Irradiation of flies as pupae has no apparent effect on mating probability, the latency to copulate or copula duration. However, when deprived of protein, sterile flies (especially males) suffer a greater reduction in longevity compared with fertile flies. Overall, access to dietary protein increases longevity for both males and females, although females live longer than males on both diets. These findings suggest that prerelease provision of dietary protein has the potential to greatly enhance the efficacy of Q-flies used in the sterile insect technique.  相似文献   

8.
The Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), (medfly) is a polyphagous and cosmopolitan agricultural pest, targeted in many areas for control by the Sterile Insect Technique (SIT). Our objective in the present study was to test the hypothesis that a bacterially enriched diet provided to sterile males will improve their sexual performance in competitive settings that emulate natural conditions. Specifically we determined how feeding on diets enriched with Klebsiella oxytoca affected the ability of sterile males to compete for wild females against wild males, their ability to inhibit female receptivity, and their survival. We found that enriching the sterile male diet with K.oxytoca significantly improved mating competitiveness in the laboratory and in field cages. In addition, bacterially enriched sterile males inhibited female receptivity more efficiently than sugar fed males and survived longer duration of starvation. We conclude that inoculating mass reared sterile flies with bacteria prior to their release is a valid approach to improve the efficacy of SIT.  相似文献   

9.
Mating competitiveness and pheromone trap catches of mass‐reared, male codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), from the Osoyoos, British Columbia, Canada, mass‐rearing facility operated by the Okanagan‐Kootenay Sterile Insect Release Board, were compared to wild males using mark–release–recapture field experiments in spring, summer, and autumn at Summerland, British Columbia. In spring, significantly more wild diapause males mated with tethered, wild females than did non‐irradiated (0 Gy) or irradiated (100 or 250 Gy) non‐diapause, mass‐reared males. A lower dose of radiation did not improve mating competitiveness, nor catches of mass‐reared males released in spring. Median mating time for wild males was approximately 45 min earlier than mass‐reared males with most wild males (70.5%) mating before sunset and mass‐reared males mating at or shortly after sunset in spring. Superior mating competitiveness of wild males in spring was mirrored by greater recapture rates in pheromone‐baited traps. In summer, mating competitiveness of mass‐reared moths improved relative to wild males and there was a significant inverse relationship between radiation dose (0, 100, and 250 Gy) and competitiveness of mass‐reared males. In autumn, untreated, wild males were significantly more responsive to pheromone traps than non‐diapausing mass‐reared males receiving 250 Gy of radiation. Mass‐reared males, subjected to diapause‐inducing conditions as larvae and emerged from diapause before this irradiation treatment, were recaptured significantly more often than similarly irradiated, non‐diapause, mass‐reared males, but not more than untreated, diapause wild males. We hypothesize that differences between wild and mass‐reared males in daily timing or speed of responses to natural or synthetic pheromone sources under montane weather patterns typical of spring in British Columbia may partially explain poor activity of sterile males, and low sterile : wild overflooding ratios during spring when measured using pheromone traps by the sterile insect release programme in British Columbia.  相似文献   

10.
The male annihilation technique (MAT) and sterile insect technique (SIT) are often used to control pestiferous tephritid fruit flies (Diptera: Tephritidae). MAT involves the deployment of traps containing a male attractant and insecticide with the goal of drastically reducing male abundance and ultimately eliminating the entire population. SIT, which involves the mass production, sterilization, and release of the target species, may also be implemented to achieve final extirpation. Generally, simultaneous implementation of MAT and SIT is counterproductive, because the presence of large numbers of male-specific traps in the environment (MAT) would greatly reduce the number of sterile males available for copulating with wild females (SIT). However, studies on the Queensland fruit fly, Bactrocera tryoni (Froggatt), indicate that concurrent use of MAT and SIT may be feasible. Sexually mature males of B. tryoni are attracted to the raspberry ketone and its synthetic analogue cue-lure. Males of B. tryoni fed raspberry-ketone-supplemented diet when newly emerged showed lower attraction to cue-lure baited traps than control males. In addition, newly emerged males provided this diet displayed accelerated sexual maturation, which would allow the early release of sterile males and reduce pre-release holding costs. Here, we examined whether the addition of raspberry ketone to the adult diet of male melon flies, Zeugodacus cucurbitae (Coquillett), produced effects similar to those observed for B. tryoni. Despite using similar methods, no significant effect of raspberry ketone-supplemented diet on time to sexual maturity, survival, mating competitiveness, or attraction to cue-lure baited traps in mass-reared Z. cucurbitae males.  相似文献   

11.
Male physiological condition can affect his ability to modulate female sexual receptivity. Thus, studying this aspect can have biological and practical implications. Here, we examine how male nutritional status affected the amount of sperm stored, remating rate and refractory period of the tephritid fruit fly Anastrepha fraterculus (Wiedemann) females. Both wild and laboratory flies were evaluated. We also examine female sperm storage patterns. Experiments were carried out by manipulating male adult diet and exposing these males to virgin females. Females mated with differently treated males were either dissected to count the amount of sperm stored or exposed to virgin males to determine remating rate and the length of the refractory period. We found that male nutritional status affected the amount of the sperm stored and the renewal of sexual receptivity in wild flies. For laboratory flies, male nutritional status affected the length of the refractory period but not the amount of sperm stored by females. In addition, we report that the ventral receptacle is not an important organ of sperm storage in this species. We conclude that male nutritional condition influences the ability to modulate female sexual receptivity, possibly through a combination of the quantity and quality of the ejaculate. From an applied perspective, providing males with an enriched diet will likely result in increased efficacy of the sterile insect technique.  相似文献   

12.
In the Mediterranean fruit fly (Ceratitis capitata Weidemann, ‘medfly’), a lekking tephritid, evidence from laboratory studies of flies from laboratory strains suggests that copulation is shorter, and sperm storage more abundant, if males are large or protein‐fed, and that copulation is longer when females are large. In addition, sperm tend to be stored asymmetrically between the female’s two spermathecae and this asymmetry declines with abundance of stored sperm. The primary objective of this study was to investigate whether these trends persist in other experimental contexts that bear closer resemblance to nature. Accordingly, we carried out experiments in a field‐cage using males derived as adults from a wild population and virgin females reared from naturally infested fruit. The results of this study were consistent with laboratory studies in that copula duration increased with female size, that sperm were stored asymmetrically between the females’ spermathecae, and that this asymmetry declined with number of sperm stored. However, we also found some previously unreported effects of female size; large females stored more sperm and stored sperm more asymmetrically between their two spermathecae than did small females. Unlike the laboratory studies, copula duration and sperm storage patterns were unaffected by male size and diet. This may be due to overwhelming variation from other sources in the wild‐collected males used, as well as environmental variability in the semi‐natural setting.  相似文献   

13.
Nutrition is commonly a powerful determinant of sexual performance in insects, and recent studies have found this to be the case in Queensland fruit flies (Tephritidae: Bactrocera tryoni Froggatt; 'Q-flies'); male Q-flies allowed to self-regulate intake of yeast hydrolysate, a rich source of amino acids and vitamins used in most mass-rearing programmes (protein) and sucrose (carbohydrate), had greatly enhanced sexual performance compared with males provided only sucrose. While some yeast hydrolysate is clearly beneficial for the sexual performance of adult male Q-flies, the questions of what proportion of yeast hydrolysate in the diet is sufficient to yield full benefits, or is too much, have not yet been addressed. To address these questions, the present study assessed sexual performance and longevity of adult male Q-flies maintained on diets containing various proportions of yeast hydrolysate and sucrose. Male Q-flies maintained as adults on dry mixtures containing 9%, 17% or 25% yeast hydrolysate had mating probability, mating latency, copula duration and longevity similar to those provided yeast hydrolysate and sucrose in separate dishes and allowed to self-regulate intake. As in previous studies, while longevity was unaffected we found a marked reduction in sexual performance when the flies were completely denied access to yeast hydrolysate, and the few that did mate had relatively short copulations. At the other extreme, flies receiving diets with high levels of yeast hydrolysate (50%, 75%, 83% and 91%) suffered marked reductions both in longevity and in mating performance.  相似文献   

14.
The Mediterranean fruit fly [Ceratitis capitata Wiedemann (Diptera: Tephritidae)], or medfly, is mass produced in many facilities throughout the world to supply sterile flies for sterile insect technique programs. Production of sterile males requires large amounts of larval and adult diets. Larval diets comprise the largest economic burdens in the mass production of sterile flies, and are one of the main areas where production costs could be reduced without affecting quality and efficacy. The present study investigated the effect of manipulating diet constituents on larval development and performance. Medfly larvae were reared on diets differing in the proportions of brewer's yeast and sucrose. We studied the effect of such diets on the ability of pupating larvae to accumulate protein and lipids, and on other developmental indicators. Except for diets with a very low proportion of brewer's yeast (e.g., 4%), pupation and adult emergence rates were in general high and satisfactory. The ability of pupating larvae to accumulate lipid reserves and proteins was significantly affected by the sucrose and yeast in the diet, and by the proportion of protein to carbohydrates (P/C). In contrast to previous nutritional studies conducted with other insects, low P/C in medfly larval diets (with excess dietary carbohydrates) resulted in pupating medfly larvae having a relatively reduced load of lipids; medfly larvae protein contents in these diets were, as expected, relatively low. Similarly, high P/C ratios in the diet produced larvae with high protein and lipid contents. Differences with other insects may be due to differential post‐ingestion regulation where a high dietary carbohydrate diet reduces the lipogenic activity of the larvae, and induces a shift from lipid to glucose oxidation. Larvae reared on low P/C diets spent more time foraging in the diet than larvae maintained on a high P/C diet, suggesting a compensatory mechanism to complement nutrient intake. The results suggest that the content of brewer's yeast, the most expensive diet component, could be fine‐tuned without apparently affecting fly quality.  相似文献   

15.
To improve the effectiveness of the sterile insect technique against the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), our objectives in this study were two‐fold. First, to evaluate the ability of sterile males of the Vienna‐8 strain to survive starvation, we compared them to wild males under laboratory conditions. The second objective was to determine the effect of protein‐rich nutrition on sterile male fly survival, under starvation conditions in the laboratory, under semi‐natural conditions in a field enclosure, and under natural conditions in the open field. Therefore, we released marked sterile flies of the two diet regimes, protein‐fed or protein‐deprived, and monitored their survival by recapturing them after 4, 6, and 7 days. In the laboratory, wild males endured starvation significantly better than sterile ones and protein addition to sterile fly diet resulted in even greater reduced capability to endure starvation. On the other hand, the addition of protein to sterile‐male diet did not affect their ability to survive in a field enclosure or in the open field. We conclude that under natural conditions, where food is available, sterile male fly survival is unaffected by protein‐rich pre‐release diet.  相似文献   

16.
The effects of protein intake on two adult male and female populations of Ceratitis capitata Wiedemann were assessed. One population consisted of flies reared for twenty years in the laboratory (Lab-pop); the other population consisted both of flies reared in the laboratory for approximately fifteen years and of the periodically introduced wild flies (Hybrid-pop). Three diets were tested: a no-yeast diet and two diets containing yeast (protein source) at the concentrations 6.5 g or 1.5 g per 100 ml diet. The parameters analyzed were: adult longevity, diet intake with and without yeast, and discrimination threshold for yeast. Protein intake increased Lab-pop adult longevity and did not affect longevity of the Hybrid-pop. Longevity in each population was similar for males and females fed on the same diet. Food behavior were similar for male and female adults of both populations; all preferred diets containing protein (yeast). Males and females in both populations ingested similar amounts of each diet. The discrimination threshold for yeast was similar for all males (0.5 g yeast/100 ml diet); Lab-pop females were able to detect the presence of smaller quantities of yeast in their diet, thus having a higher discrimination capacity (0.4 g/100 ml diet) as compared to the Hybrid-pop females (0.6 g/ 100 ml diet).  相似文献   

17.
We report the results of a study on potential food sources of the widely distributed Indo‐Australian braconid fruit fly parasitoid Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae). Adults sustained life on diets of fruit juice or fruit pulp, a homopteran and its associated honeydew, or extrafloral nectary secretions. Longevities on all these foods and fecundity on fruit juice were comparable to those achieved on the honey that is typically provided in mass‐rearing programs. Certain of the flower species Bidens alba (L.), Spermacoce verticillata L., Lobularia maritima (L.) Desv., Brassica nigra (L.), Lantana camara L., their nectar or pollen, provided a diet that resulted in longer maximum life spans than water alone. Unlike some tephritid flies, the braconid did not feed on fresh bird feces or leaf‐surface exudates. Feeding by D. longicaudata on wounded host fruits of tephritid flies suggests that adult parasitoids would not need separate forays for adult food and oviposition sites, as these occur in the same locations. We conclude that an inventory of adult foods may help target inundative releases of D. longicaudata and lead to improvements in diets used for mass rearing.  相似文献   

18.
The success of the sterile insect technique (SIT) for the control of the Mediterranean fruit fly or medfly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), depends largely on the ability of sterile flies to spread in the target area and compete with the wild males for wild females. Our objectives in the present study were three‐fold: (1) to evaluate the dispersal ability of sterile male medflies and compare their spatial dispersion patterns with that of wild males, (2) to evaluate how different release methods affect subsequent spatial dispersal, and (3) to determine whether manipulating the pre‐release diet of sterile males affects their dispersal. To achieve these objectives, we conducted three experiments in the field where we quantified and analyzed the spatial and temporal dispersal patterns of sterile medflies and the dispersion of resident wild males. Overall, ca. 5% of the released sterile flies were recaptured 100 m from the release point, and ca. 2% were recaptured 200 m from the release point. The released flies rarely survived longer than 5–7 days. We repeatedly found that the spatial dispersion patterns of sterile males significantly correlated with those of wild males. Release methods strongly affected subsequent fly dispersal in the field as significantly more flies were recaptured following a scattered release vs. a central one. Finally, we show that enriching sterile fly pre‐release diet with protein did not affect subsequent dispersal in the field. We conclude that sterile males are able to match the dispersion patterns of wild males, an outcome that is highly important for SIT success. Large releases from central points distant from each other may leave many areas uncovered. Accordingly, scattered releases, repeated twice a week, will provide better coverage of all available aggregations sites. The spatial performance of protein‐fed males suggests that pre‐release diet amendments may be used without detriment as a sexual stimulant in SIT programs.  相似文献   

19.
Feeding on yeast hydrolysate (a source of nitrogen) has a strong influence on the physiology and behaviour of the Queensland fruit fly (Q‐fly), Bactrocera tryoni (Froggatt) (Diptera: Tephritidae), affecting longevity, sexual maturation, oogenesis, and mating performance. In this study, we demonstrate that access to yeast hydrolysate also influences the development of attraction to cue‐lure in Q‐flies. We provided virgin Q‐flies various periods of access to yeast hydrolysate (continuous, 48 h, 24 h, or deprived). Attraction of males to cue‐lure was increased and occurred at an earlier age when they were fed yeast hydrolysate. Males given continuous access were strongly attracted to cue‐lure at a younger age (8 days after emergence), but by 12 days after emergence attraction of males given access to yeast hydrolysate for 48 h did not differ from males given continuous access. Attraction by males deprived or given just 24 h access to yeast hydrolysate was always significantly lower than those of males with continuous access. Male attraction to cue‐lure was highest in the early morning. While cue‐lure is most often thought of as a male attractant, virgin female Q‐flies were caught in cue‐lure traps at dusk at ages when they are known to be sexually mature. We suggest that cue‐lure or similar natural chemicals play a role in the Q‐fly mating system. γ‐Irradiation used to induce sterility had no significant effect on attraction to cue‐lure by Q‐flies.  相似文献   

20.
The outcome of post‐copulatory sexual selection is determined by a complex set of interactions between the primary reproductive traits of two or more males and their interactions with the reproductive traits of the female. Recently, a number of studies have shown the primary reproductive traits of both males and females express phenotypic plasticity in response to the thermal environment experienced during ontogeny. However, how plasticity in these traits affects the dynamics of sperm competition remains largely unknown. Here, we demonstrate plasticity in testes size, sperm size and sperm number in response to developmental temperature in the bruchid beetle Callosobruchus maculatus. Males reared at the highest temperature eclosed at the smallest body size and had the smallest absolute and relative testes size. Males reared at both the high‐ and low‐temperature extremes produced both fewer and smaller sperm than males reared at intermediate temperatures. In the absence of sperm competition, developmental temperature had no effect on male fertility. However, under conditions of sperm competition, males reared at either temperature extreme were less competitive in terms of sperm offence (P2), whereas those reared at the lowest temperature were less competitive in terms of sperm defence (P1). This suggests the developmental pathways that regulate the phenotypic expression of these ejaculatory traits are subject to both natural and sexual selection: natural selection in the pre‐ejaculatory environment and sexual selection in the post‐ejaculatory environment. In nature, thermal heterogeneity during development is commonplace. Therefore, we suggest the interplay between ecology and development represents an important, yet hitherto underestimated component of male fitness via post‐copulatory sexual selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号