首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
The Escherichia coli plasmid R124 codes for a type I restriction and modification system EcoR124 and carries genetic information, most probably in the form of a "silent copy," for the expression of a different R-M specificity R124/3. Characteristic DNA rearrangements have been shown to accompany the switch in specificity from R124 to R124/3 and vice versa. We have cloned a 14.2-kb HindIII fragment from R124 and shown that it contains the hsdR, hsdM, and hsdS genes which code for the EcoR124 R-M system. An equivalent fragment from the plasmid R124/3 following the switch in R-M specificity has also been cloned and shown to contain the genes coding for the EcoR124/3 R-M system. These fragments, however, lack a component present on the wild-type plasmid essential for the switch in specificity. Restriction fragment maps and preliminary heteroduplex analysis indicate the near identity of the genes that encode the two different DNA recognition specificities. Transposon mutagenesis was used to locate the positions of the hsdR, hsdM, and hsdS genes on the cloned fragments in conjunction with complementation tests for gene function. Indirect evidence indicates that hsdR is expressed from its own promoter and that hsdM and hsdS are expressed from a single promoter, unidirectionally.  相似文献   

2.
E Skrzypek  A Piekarowicz 《Plasmid》1989,21(3):195-204
The Escherichia coli plasmid pDXX1 codes for a type I restriction and modification system, EcoDXX1. A 15.5-kb BamHI fragment from pDXX1 has been cloned and contains the hsdR, hsdM, and hsdS genes that encode the EcoDXX1 system. The EcoDXX1 hsd genes can complement the gene products of the EcoR124 and EcoR124/3 hsd systems, but not those of EcoK and EcoB. Hybridization experiments using EcoDXX1 hsd genes as a probe demonstrate homology between EcoDXX1 and EcoR124 and EcoR124/3 restriction-modification systems, but weak or no homology between EcoDXX1 and EcoK or EcoB systems.  相似文献   

3.
4.
Large scale purification of the type I modification methylase EcoR124 has been achieved from an over-expressing strain by a two step procedure using ion-exchange and heparin chromatography. Pure methylase is obtained at a yield of 30 mg per gm of cell paste. Measurements of the molecular weight and subunit stoichiometry show that the enzyme is a trimeric complex of 162 kDa consisting of two subunits of HsdM (58 kDa) and one subunit of HsdS (46 kDa). The purified enzyme can methylate a DNA fragment bearing its cognate recognition sequence. Binding of the methylase to synthetic DNA fragments containing either the EcoR124 recognition sequence GAAN6RTCG, or the recognition sequence GAAN7RTCG of the related enzyme EcoR124/3, was followed by fluorescence competition assays and by gel retardation analysis. The results show that the methylase binds to its correct sequence with an affinity of the order 10(8) M-1 forming a 1:1 complex with the DNA. The affinity for the incorrect sequence, differing by an additional base pair in the non-specific spacer, is almost two orders of magnitude lower.  相似文献   

5.
The hsd locus (host specificity of DNA) was identified in the Neisseria gonorrhoeae genome. The DNA fragment encoding this locus produced an active restriction and modification (R/M) system when cloned into Escherichia coli. This R/M system was designated NgoAV. The cloned genomic fragment (7800 bp) has the potential to encode seven open reading frames (ORFs). Several of these ORFs had significant homology with other proteins found in the databases: ORF1, the hsdM, a methylase subunit (HsdM); ORF2, a homologue of dinD; ORF3, a homologue of hsdS; ORF4, a homologue of hsdS; and ORF5, an endonuclease subunit hsdR. The endonuclease and methylase subunits possessed strongest protein sequence homology to the EcoR124II R/M system, indicating that NgoAV belongs to the type IC R/M family. Deletion analysis showed that only ORF3 imparted the sequence specificity of the RM.NgoAV system, which recognizes an interrupted palindrome sequence (GCAN(8-)TGC). The genetic structure of ORF3 (208 amino acids) is almost identical to the structure of the 5' truncated hsdS genes of EcoDXXI or EcoR124II R/M systems obtained by in vitro manipulation. Genomic sequence analysis allowed us to identify hsd loci with a very high homology to RM.NgoAV in two strains of Neisseria meningitidis. However, significant differences in the organization and structure of the hsdS genes in both these systems suggests that, if functional, they would possess recognition sites that differ from the gonococcus and from themselves.  相似文献   

6.
The type IC DNA methyltransferase M.EcoR124I is a trimeric enzyme of 162 kDa consisting of two modification subunits, HsdM, and a single specificity subunit, HsdS. Studies have been largely restricted to the HsdM subunit or to the intact methyltransferase since the HsdS subunit is insoluble when over-expressed independently of HsdM. Two soluble fragments of the HsdS subunit have been cloned, expressed and purified; a 25 kDa N-terminal fragment (S3) comprising the N-terminal target recognition domain together with the central conserved domain, and a 8.6 kDa fragment (S11) comprising the central conserved domain alone. Analytical ultracentrifugation shows that the S3 subunit exists principally as a dimer of 50 kDa. Gel retardation and competition assays show that both S3 and S11 are able to bind to HsdM, each with a subunit stoichiometry of 1:1. The tetrameric complex (S3/HsdM)(2) is required for effective DNA binding. Cooperative binding is observed and at low enzyme concentration, the multisubunit complex dissociates, leading to a loss of DNA binding activity. The (S3/HsdM)(2) complex is able to bind to both the EcoR124I DNA recognition sequence GAAN(6)RTCG and a symmetrical DNA sequence GAAN(7)TTC, but has a 30-fold higher affinity binding for the latter DNA sequence. Exonuclease III footprinting of the (S3/HsdM)(2) -DNA complex indicates that 29 nucleotides are protected on each strand, corresponding to a region 8 bp on both the 3' and 5' sides of the recognition sequence bound by the (S3/HsdM)(2) complex.  相似文献   

7.
Type I restriction endonuclease holoenzymes contain methylase (M), restriction (R) and specificity (S) subunits, present in an M2:R2:S1 stoichiometry. These enzymes bind to specific DNA sequences and translocate dsDNA in an ATP-dependent manner toward the holoenzyme anchored at the recognition sequence. Once translocation is impeded, DNA restriction, which functions to protect the host cell from invading DNA, takes place. Translocation and DNA cleavage are afforded by the two diametrically opposed R-subunits. To gain insight into the mechanism of translocation, a detailed characterization of the ATPase activity of EcoR124I was done. Results show that following recognition sequence binding, ATP hydrolysis-coupled, bidirectional DNA translocation by EcoR124I ensues, with the R-subunits transiently disengaging, on average, every 515 bp. Macroscopic processivity of 2031(+/-184)bp is maintained, as the R-subunits remain in close proximity to the DNA through association with the methyltransferase. Transient uncoupling of ATP hydrolysis from translocation results in 3.1(+/-0.4) ATP molecules being hydrolyzed per base-pair translocated per R-subunit. This is the first clear demonstration of the coupling of ATP hydrolysis to dsDNA translocation, albeit inefficient. Once translocation is impeded on supercoiled DNA, the DNA is cleaved. DNA cleavage inactivates the EcoR124I holoenzyme partially and reversibly, which explains the stoichiometric behaviour of type I restriction enzymes. Inactivated holoenzyme remains bound to the DNA at the recognition sequence and immediately releases the nascent ends. The release of nascent ends was demonstrated using a novel, fluorescence-based, real-time assay that takes advantage of the ability of the Escherichia coli RecBCD enzyme to unwind restricted dsDNA. The resulting unwinding of EcoR124I-restricted DNA by RecBCD reveals coordination between the restriction-modification and recombination systems that functions to destroy invading DNA efficiently. In addition, we demonstrate the displacement of EcoR124I following DNA cleavage by the translocating RecBCD enzyme, resulting in the restoration of catalytic function to EcoR124I.  相似文献   

8.
Escherichia coli strains K12 and B, and a new strain designated D, each encode a characteristic restriction and modification enzyme. These enzymes (EcoK, EcoB and presumably EcoD) comprise three subunits of which one, that encoded by the so-called specificity gene (hsdS), is responsible for recognition of the DNA sequence specific to that system. The other two subunits, encoded by hsdR and hsdM, are interchangeable between systems, and the available molecular evidence suggests that the hsdR and hsdM genes are highly conserved. The DNA sequence of a segment of the hsd region that includes the hsdS gene has been determined for each of the three strains. The hsdS gene varies in length from 1335 to 1425 base-pairs and the only regions showing obvious homology, one of about 100 base-pairs and a second of about 250 base-pairs, are highly conserved. The remainder of each hsd S gene shares little, or no, homology with either of the other related specificity genes. Thus, the specificity subunits, though components of a family of closely related enzymes with very similar functions, have remarkably dissimilar primary structure.  相似文献   

9.
We have developed a complementation assay which allows us to distinguish between mutations affecting subunit assembly and mutations affecting DNA binding in the DNA recognition subunit (HsdS) of the multimeric restriction endonuclease EcoR1241. A number of random point mutations were constructed to test the validity of this assay. Two of the mutants produced were found to be truncated polypeptides that were still capable of complementation with the EcoR1241 Hsd subunits to give an active restriction enzyme of novel DNA specificity. The N-terminal variable domain (responsible for recognition of GAA from the EcoR1241 recognition sequence GAAnnnnnnRTCG) and the spacer region (central conserved region) is intact in both of these mutants. One of these mutant genes (hsdS(delta 50) has been cloned as an active Mtase. Purification of the Mtase proved to be difficult because the complex is weak. However, Mtase activity was obtained from a soluble cell extract, and this allowed us to determine the DNA recognition sequence of the Mtase to be GAAnnnnnnnTTC. This recognition sequence is an inverted repeat of 5'-end of the EcoR1241 recognition sequence. This suggests that the mutant Mtase is assembled from two inverted HsdS(D50) subunits, possibly held together by the HsdM subunits.  相似文献   

10.
We purified and characterized both the methyltransferase and the endonuclease containing the HsdS delta 50 subunit (type I restriction endonucleases are composed of three subunits--HsdR required for restriction, HsdM required for methylation and HsdS responsible for DNA recognition) produced from the deletion mutation hsdS delta 50 of the type IC R-M system EcoR 124I; this mutant subunit lacks the C-terminal 163 residues of HsdS and produces a novel DNA specificity. Analysis of the purified HsDs delta 50 subunit indicated that during purification it is subject to partial proteolysis resulting in removal of approximately 1 kDa of the polypeptide at the C-terminus. This proteolysis prevented the purification of further deletion mutants, which were determined as having a novel DNA specificity in vivo. After biochemical characterization of the mutant DNA methyltransferase (MTase) and restriction endonuclease we found only one difference comparing with the wild-type enzyme--a significantly higher binding affinity of the MTase for the two substrates of hemimethylated and fully methylated DNA. This indicates that MTase delta 50 is less able to discriminate the methylation status of the DNA during its binding. However, the mutant MTase still preferred hemimethylated DNA as the substrate for methylation. We fused the hsdM and hsdS delta 50 genes and showed that the HsdM-HsdS delta 50 fusion protein is capable of dimerization confirming the model for assembly of this deletion mutant.  相似文献   

11.
Eco R124I, Eco DXXI and Eco prrI are the known members of the type IC family of DNA restriction and modification systems. The first three are carried on large, conjugative plasmids, while Eco prrI is chromosomally encoded. The enzymes are coded by three genes, hsdR , hsdM and hsdS . Analysis of the DNA sequences upstream and downstream of the type IC hsd loci shows that all are highly homologous to each other and also to sequences present in the bacteriophage P1 genome. The upstream sequences include functional phd and doc genes, which encode an addiction system that stabilizes the P1 prophage state, and extend to and beyond pac , the site at which phage DNA packaging begins. Downstream of the hsd loci, P1 DNA sequences begin at exactly the same place for all of the systems. For Eco DXXI and Eco prrI the P1 homology extends for thousands of base pairs while for Eco R124I an IS 1 insertion and an associated deletion have removed most of the P1-homologous sequences. The significance of these results for the evolution of DNA restriction and modification systems is discussed.  相似文献   

12.
Type I restriction-modification (RM) systems are comprised of two multi-subunit enzymes, the methyltransferase (~160 kDa), responsible for methylation of DNA, and the restriction endonuclease (~400 kDa), responsible for DNA cleavage. Both enzymes share a number of subunits. An engineered RM system, EcoR124I(NT), based on the N-terminal domain of the specificity subunit of EcoR124I was constructed that recognises the symmetrical sequence GAAN(7)TTC and is active as a methyltransferase. Here, we investigate the restriction endonuclease activity of R. EcoR124I(NT)in vitro and the subunit assembly of the multi-subunit enzyme. Finally, using small-angle neutron scattering and selective deuteration, we present a low-resolution structural model of the endonuclease and locate the motor subunits within the multi-subunit enzyme. We show that the covalent linkage between the two target recognition domains of the specificity subunit is not required for subunit assembly or enzyme activity, and discuss the implications for the evolution of Type I enzymes.  相似文献   

13.
We have investigated the role of a four amino acid element that is repeated twice and three times, respectively, in the specificity polypeptides of the two allelic restriction-modification systems EcoR124 and EcoR124/3. We had earlier shown that this difference in amino acid sequence between the two systems is solely responsible for the different DNA sequence specificities of the two systems. The effect of single amino acid substitutions and small insertion and deletion mutations on restriction activity and modification specificity was determined in vivo by phage infection assays and in vitro by methylation of DNA with purified modification methylases. Mutant restriction-modification systems with changes in the number and the length of the central amino acid repeats exhibited decreased restriction activity and in some cases relaxed substrate specificity. Our data strongly support the idea that the repetitive amino acid motif in the specificity polypeptides forms part of a flexible interdomain linker. It may be responsible for positioning on the DNA the two major specificity polypeptide domains which are thought to contact independently the half sites of the split recognition sequences typical for all type I restriction-modification systems.  相似文献   

14.
The genes (hsd A) encoding EcoA, a restriction and modification system first identified in Escherichia coli 15T-, behave in genetic crosses as alleles of the genes (hsd K) encoding the archetypal type I restriction and modification system of E. coli K12. Nevertheless, molecular experiments have failed to detect relatedness between the A and K systems. We have cloned the hsd A genes and have identified, on the basis of DNA homology, related genes (hsd E) conferring a new specificity to a natural isolate of E. coli. We show that the overall organization of the genes encoding EcoA and EcoE closely parallels that for EcoK. Each enzyme is encoded by three genes, of which only one, hsdS, confers the specificity of DNA interaction. The three genes are in the same order as those encoding EcoK, i.e. hsdR, hsdM and hsdS and, similarly, they include a promoter between hsdR and hsdM from which the M and S genes can be transcribed. The evidence indicates that EcoA and EcoE are type I restriction and modification enzymes, but they appear to identify an alternative family to EcoK. For both families, the hsdR polypeptide is by far the largest, but the sizes of the other two polypeptides are reversed, with the smallest polypeptide of EcoK being the product of hsd S, and the smallest for the EcoA family being the product of hsdM. Physiologically, the A restriction and modification system differs from that of K and its relatives, in that A-specific methylation of unmodified DNA is particularly effective.  相似文献   

15.
Type I restriction endonucleases such as EcoR124I cleave DNA at undefined loci, distant from their recognition sequences, by a mechanism that involves the enzyme tracking along the DNA between recognition and cleavage sites. This mechanism was examined on plasmids that carried recognition sites for EcoR124I and recombination sites for resolvase, the latter to create DNA catenanes. Supercoiled substrates with either one or two restriction sites were linearized by EcoR124I at similar rates, although the two-site molecule underwent further cleavage more readily than the one-site DNA. The catenane from the plasmid with one EcoR124I site, carrying the site on the smaller of the two rings, was cleaved by EcoR124I exclusively in the small ring, and this underwent multiple cleavage akin to the two-site plasmid. Linear substrates derived from the plasmids were cleaved by EcoR124I at very slow rates. The communication between recognition and cleavage sites therefore cannot stem from random looping. Instead, it must follow the DNA contour between the sites. On a circular DNA, the translocation of non-specific DNA past the specifically bound protein should increase negative supercoiling in one domain and decrease it in the other. The ensuing topological barrier may be the trigger for DNA cleavage.  相似文献   

16.
Type I restriction enzymes bind sequence-specifically to unmodified DNA and subsequently pull the adjacent DNA toward themselves. Cleavage then occurs remotely from the recognition site. The mechanism by which these members of the superfamily 2 (SF2) of helicases translocate DNA is largely unknown. We report the first single-molecule study of DNA translocation by the type I restriction enzyme EcoR124I. Mechanochemical parameters such as the translocation rate and processivity, and their dependence on force and ATP concentration, are presented. We show that the two motor subunits of EcoR124I work independently. By using torsionally constrained DNA molecules, we found that the enzyme tracks along the helical pitch of the DNA molecule. This assay may be directly applicable to investigating the tracking of other DNA-translocating motors along their DNA templates.  相似文献   

17.
We have characterized a novel mutant of EcoDXXI, a type IC DNA restriction and modification (R-M) system, in which the specificity has been altered due to a Tn5 insertion into the middle of hsdS, the gene which encodes the polypeptide that confers DNA sequence specificity to both the restriction and the modification reactions. Like other type I enzymes, the wild type EcoDXXI recognizes a sequence composed of two asymmetrical half sites separated by a spacer region: TCA(N7)RTTC. Purification of the EcoDXXI mutant methylase and subsequent in vitro DNA methylation assays identified the mutant recognition sequence as an interrupted palindrome, TCA(N8)TGA, in which the 5' half site of the wild type site is repeated in inverse orientation. The additional base pair in the non-specific spacer of the mutant recognition sequence maintains the proper spacing between the two methylatable adenine groups. Sequencing of both the wild type and mutant EcoDXXI hsdS genes showed that the Tn5 insertion occurred at nucleotide 673 of the 1221 bp gene. This effectively deletes the entire carboxyl-terminal DNA binding domain which recognizes the 3' half of the EcoDXXI binding site. The truncated hsdS gene still encodes both the amino-terminal DNA binding domain and the conserved repeated sequence that defines the length of the recognition site spacer region. We propose that the EcoDXXI mutant methylase utilizes two truncated hsdS subunits to recognize its binding site. The implications of this finding in terms of subunit interactions and the malleability of the type I R-M systems will be discussed.  相似文献   

18.
Using a combination of single molecule and bulk solution measurements, we have examined the DNA translocation activity of a helicase, the Type I restriction modification enzyme EcoR124I. We find that EcoR124I can translocate past covalent interstrand crosslinks, inconsistent with an obligatory unwinding mechanism. Instead, translocation of the intact dsDNA occurs principally via contacts to the sugar-phosphate backbone and bases of the 3'-5' strand; contacts to the 5'-3' strand are not essential for motion but do play a key role in stabilising the motor on the DNA. A model for dsDNA translocation is presented that could be applicable to a wide range of other enzyme complexes that are also labelled as helicases but which do not have actual unwinding activity.  相似文献   

19.
C Price  J C Shepherd    T A Bickle 《The EMBO journal》1987,6(5):1493-1497
The DNA sequences recognized by the allelic type I restriction enzymes EcoR124 and EcoR124/3 were determined. EcoR124 recognizes 5'-GAA(N6)RTCG-3' and EcoR124/3 recognizes 5'-GAA(N7)RTCG-3'. These are typical of sequences recognized by type I recognition enzymes in that they consist of two specific domains separated by a non-specific spacer sequence. For these two enzymes, the specific sequences are identical but the length of the non-specific spacer is different. The specific domains of EcoR124/3 are thus 3.4 A further apart than those of EcoR124 and rotated with respect to each other through a further 36 degrees.  相似文献   

20.
Type I restriction-modification enzymes differ significantly from the type II enzymes commonly used as molecular biology reagents. On hemi-methylated DNAs type I enzymes like the EcoR124I restriction-modification complex act as conventional adenine methylases at their specific target sequences, but unmethylated targets induce them to translocate thousands of base pairs through the stationary enzyme before cleaving distant sites nonspecifically. EcoR124I is a superfamily 2 DEAD-box helicase like eukaryotic double-strand DNA translocase Rad54, with two RecA-like helicase domains and seven characteristic sequence motifs that are implicated in translocation. In Rad54 a so-called extended region adjacent to motif III is involved in ATPase activity. Although the EcoR124I extended region bears sequence and structural similarities with Rad54, it does not influence ATPase or restriction activity as shown in this work, but mutagenesis of the conserved glycine residue of its motif III does alter ATPase and DNA cleavage activity. Through the lens of molecular dynamics, a full model of HsdR of EcoR124I based on available crystal structures allowed interpretation of functional effects of mutants in motif III and its extended region. The results indicate that the conserved glycine residue of motif III has a role in positioning the two helicase domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号