首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Evolutionary Genomics of Weedy Rice in the USA   总被引:8,自引:0,他引:8  
Red rice Is an Interfertlle, weedy form of cultivated rice (Oryza sativa L.) that competes aggressively with the crop In the southern US, reducing yields and contaminating harvests. No wild Oryza species occur In North America and the weed has been proposed to have evolved through multiple mechanisms, Including "de-domestication" of US crop cultlvars, accidental introduction of Asian weeds, and hybridization between US crops and Asian wild/weedy Oryza strains. The phenotype of US red rice ranges from "crop mimics", which share some domestication traits with the crop, to strains closely resembling Asian wild Oryza species. Assessments of genetic diversity have Indicated that many weed strains are closely related to Asian taxa (Including indica and aus rice varieties, which have never been cultivated In the US, and the Asian crop progenitor O. ruflpogon), whereas others show genetic similarity to the tropical Japonica varieties cultivated In the southern US. Herein, we review what Is known about the evolutionary origins and genetic diversity of US red rice and describe an ongoing research project to further characterize the evolutionary genomlcs of this aggressive weed.  相似文献   

2.
Red rice is an interfertiie, weedy form of cultivated rice (Oryza sativa L.) that competes aggressively with the cropin the southern US, reducing yields and contaminating harvests. No wild Oryza species occur In North America andthe weed has been proposed to have evolved through multiple mechanisms, including "de-domestication" of UScrop cultivars, accidental introduction of Asian weeds, and hybridization between US crops and Asian wild/weedyOryza strains. The phenotype of US red rice ranges from "crop mimics", which share some domestication traitswith the crop, to strains closely resembling Asian wild Oryza species. Assessments of genetic diversity haveindicated that many weed strains are closely related to Asian taxa (including indica and aus rice varieties, whichhave never been cultivated in the US, and the Asian crop progenitor O. rufipogon), whereas others show geneticsimilarity to the tropical japonica varieties cultivated in the southern US. Herein, we review what is known aboutthe evolutionary origins and genetic diversity of US red rice and describe an ongoing research project to furthercharacterize the evolutionary genomics of this aggressive weed.  相似文献   

3.
Two surveys were conducted to investigate weed vegetation in a 153-hm^2 sampling area of summer crop fields from Anhui Province, China, through visual scoring of the level of weed infestation compared with summer crops on a seven-class scale. In total, 155 sampling sites were selected in the field based on crops, tillage, rotation systems, geographical regions, and soil types across the province. Data on weed communities and environmental factors were collected and analyzed through principal component analysis (PCA) and canonical correspondence analysis (CCA), and the output was interpreted ecologically. Results showed that the main factors influencing the structure and distribution of weed communities in summer crop fields were the soil submersion period, latitude, and soil type and pH. The CCA indicated a significant relationship between weed dominance and soil submersion duration, latitude, and soil pH. From the result of the PCA and CCA ordination, the 155 sampling sites could be divided into three groups based on geographic and floristic composition, as well as weed abundance. The southern dry land group, which was characterized by a double-cropping system in the hilly regions of southern and central Anhui Province with a continuous summer crop and an autumn dry land crop, was dominated by Galium aparine Linn. var. tenerum (Gren. et Godr) Robb., Avenafatua L., and Veronica persica Poir. The northern dry land group, which had the same cropping system as the southern dry land group, was dominated by G. aparine var. tenerum, Galium tricorne Stokes, Descurainia sophia (L.) Schur., and Lithospermum arvense L. in the North Anhui Province, China. These two dry land groups could be combined into one large dry land group, in which the Galium weed vegetation type dominated. The third group was the paddy soil group, which was characterized by a continu- ous summer crop and double- or triple-cropping systems of rice, and prevailed in the south and central areas of Anhui Province; Alopecurus aequalis Sobol. was the dominant weed in this group. Other main weeds in this group included Malachium aquaticum (L.) Fries, Stellaria alsine Grimm, Alopecurusjaponicus Steud., and Lapsana apogonoides Maxim. Thus, the weed community distributions in this group were described as the Alopecurus weed vegetation type. The paddy soil group could be divided into two subgroups, one southern and one central paddy soil subgroup. A strategy for integrated weed management is suggested according to the weed distribution pattern. The present study serves as a good example of how a quantitative research method was used to associate a visual estimate of weed infestation with multivariate analyses, such as PCA and CCA, and how this method can be applied to the study of weed vegetation on arable land.  相似文献   

4.
Weed tolerance of UV-B radiation varies with species, and the radiation could affect weed ecology and management. Variations In growth, photosynthesis and defense system among four important agronomic weeds, Abutllon theophrastl Medlk, Amaranthus retroflexus L., Digitaria sanguinalis (L.) Scop and Chloris virgata Swartz, under Increased UV-B radiation (ambient and increased radiation at 2.7, 5.4 and 10.8 kJ.m^-2.d-1) were studied In the greenhouse experiment. After 2 weeks of radiation, the shoots' dry mass decreased with increasing UV-B radiation except for D. sanguinalis. The reduction in biomass was the result of changes in morphology and physiology. Higher levels of UV-B treatment decreased the leaf area, plant height, net photosynthetic rate and chlorophyll contents, while it increased the contents of wax and UV-B absorbing compound in all species, except for A. retroflexus, which did not increase significantly. The activity of superoxide dismutase, catalase, ascorbate peroxide and the content of ascorblc acid changed differently among the weed species as UV-B radiation increased. D. sangulnalls was the most tolerant and A. retroflexus the most sensitive to increased UV-B radiation. The results also show that the two grass species (D. sanguinalis and C. virgata) were more tolerant to UV-B radiation than the two broadleafed species (A. theophrasti and A. retroflexus). The UV-B absorbing compound and leaf wax played Important roles against UV-B damages in the two grass weeds. The overall results suggest that weed community, competition and management will be altered by continuous ozone depletion.  相似文献   

5.
Integrated pest management (IPM) has long been considered a profit- and product (or technology)-driven multidisciplinary research field that maximizes crop yield and minimizes pest-inflicted economic losses. The introduction of transgenic crops has revolutionized crop protection and IPM by combining crop protection and genetics into one entity-the seed. Before the arrival of transgenic technology, studies of insect-plant interactions were frequently categorized under the field of ecology, and IPM programs were then the product of applied ecological research on suppressing pest populations in crop or livestock production.  相似文献   

6.
Understanding how plant species richness influences the diversity of herbivorous and predatory/parasitic arthropods is central to community ecology.We explore the effects of crop species richness on the diversity of pest insects and their natural enemies.Using data from a four-year experiment with five levels of crop species richness,we found that crop species richness significantly affected the pest species richness,but there were no significant effects on richness of the pests’natural enemies.In contrast,the species richness of pest insects significantly affected their natural enemies.These findings suggest a cascade effect where trophic interactions are strong between adjacent trophic levels,while the interactions between connected but nonadjacent trophic levels are weakened by the intermediate trophic level.High crop species richness resulted in a more stable arthropod community compared with communities in monoculture crops.Our results highlight the complicated cross-trophic interactions and the crucial role of crop diversity in the food webs of agro-ecosystems.  相似文献   

7.
<正> CURRENT ZOOLOGY is a bimonthly,peer-reviewed international journal that publishes reviews,research articles,and short communications in all aspects of Zoology,including significant new findings of fundamental and generalinterest.Submissions in the research fields of ecology,behavioral biology,biogeography,conservation biology,evolutionary biology and genomics are especially welcome.In particular,CURRENT ZOOLOGY seeks to publish researchthat explores the interface between zoological disciplines,and is truly integrative by illuminating the greater picture.  相似文献   

8.
《动物学报(英文版)》2013,(6):F0003-F0003
CURRENT ZOOLOGY is a bimonthly, peer-reviewed international journal that publishes reviews, research articles, and short communications in all aspects of Zoology, including significant new findings of fundamental and general interest. Submissions in the research fields of ecology, behavioral biology, biogeography, conservation biology, and evolutionary biology are especially welcome. In particular, CURRENT ZOOLOGY seeks to publish research that ex- plores the interface between zoological disciplines, and is truly integrative by illuminating the greater picture.  相似文献   

9.
《动物学报(英文版)》2014,(3):F0003-F0003
CURRENT ZOOLOGY is a bimonthly, peerreviewed international journal that publishes reviews, research articles, and short communications in all aspects of Zoology, including significant new findings of fundamental and general interest. Submissions in the research fields of ecology, behavioral biology, biogeography, conservation biology, and evolutionary biology are especially welcome. In particular, CURRENT ZOOLOGY seeks to publish research that ex plores the interface between zoological disciplines, and is truly integrative by illuminating the greater picture.  相似文献   

10.
《动物学报(英文版)》2014,(2):F0003-F0003
CURRENT ZOOLOGY is a bimonthly, peer-reviewed international journal that publishes reviews, research articles, and short communications in all aspects of Zoology, including significant new findings of fundamental and general interest. Submissions in the research fields of ecology, behavioral biology, biogeography, conservation biology, and evolutionary biology are especially welcome. In particular, CURRENT ZOOLOGY seeks to publish research that explores the interface between zoological disciplines, and is truly integrative bv illuminating the greater nicture.  相似文献   

11.
Agricultural weeds frequently hybridize with each other or with related crop species. Some hybrid weeds exhibit heterosis (hybrid vigor), which may be stabilized through mechanisms like genome duplication or vegetative reproduction. Even when heterosis is not stabilized, hybridization events diversify weed gene pools and often enable adaptive introgression. Consequently, hybridization may promote weed evolution and exacerbate weed–crop competition. However, hybridization does not always increase weediness. Even when viable and fertile, hybrid weeds sometimes prove unsuccessful in crop fields. This review provides an overview of weed hybridization and its management implications. We describe intrinsic and extrinsic factors that influence hybrid fitness in agroecosystems. We also survey the rapidly growing literature on crop–weed hybridization and the link between hybridization and invasiveness. These topics are increasingly relevant in this era of genetic tools for crop improvement, intensive and simplified cropping systems, and globalized trade. The review concludes with suggested research priorities, including hybridization in the context of climate change, plant–insect interactions, and redesigned weed management programs. From a weed management perspective, hybridization is one of many reasons that researchers and land managers must diversify their weed control toolkits.  相似文献   

12.
Allelopathy in wheat (Triticum aestivum)   总被引:1,自引:0,他引:1  
Wheat (Triticum aestivum) allelopathy has potential for the management of weeds, pests and diseases. Both wheat residue allelopathy and wheat seedling allelopathy can be exploited for managing weeds, including resistant biotypes. Wheat varieties differ in allelopathic potential against weeds, indicating that selection of allelopathic varieties might be a useful strategy in integrated weed management. Several categories of allelochemicals for wheat allelopathy have been identified, namely, phenolic acids, hydroxamic acids and short‐chain fatty acids. Wheat allelopathic activity is genetically controlled and a multigenic model has been proposed. Research is underway to identify genetic markers associated with wheat allelopathy. Once allelopathic genes have been located, a breeding programme could be initiated to transfer the genes into modern varieties for weed suppression. The negative impacts of wheat autotoxicity on agricultural production systems have also been identified when wheat straws are retained on the soil surface for conservation farming purposes. A management package to avoid such deleterious effects is discussed. Wheat allelopathy requires further study in order to maximise its allelopathic potential for the control of weeds, pests and diseases, and to minimise its detrimental effects on the growth of wheat and other crops.  相似文献   

13.
模拟化感作物种植密度对杂草种群数量的作用   总被引:2,自引:0,他引:2  
具化感作用的作物其种植密度会影响杂草的种群动态。本研究应用数学模型作为分析问题的工具,对作物化感作用下杂草种群动态进行了模型分析和计算机模拟,结果表明,当作物的种植密度较大时,杂草的种群动态数量可以得到有效的控制;而当作物种植密度低于一定数量时,其化感作用对杂草的种群动态数量影响不大。  相似文献   

14.
Weeds are known to cause enormous losses due to their interference in agroecosystems. Because of environmental and human health concerns, worldwide efforts are being made to reduce the heavy reliance on synthetic herbicides that are used to control weeds. In this regard the phenomenon of allelopathy, which is expressed through the release of chemicals by a plant, has been suggested to be one of the possible alternatives for achieving sustainable weed management. The use of allelopathy for controlling weeds could be either through directly utilizing natural allelopathic interactions, particularly of crop plants, or by using allelochemicals as natural herbicides. In the former case, a number of crop plants with allelopathic potential can be used as cover, smother, and green manure crops for managing weeds by making desired manipulations in the cultural practices and cropping patterns. These can be suitably rotated or intercropped with main crops to manage the target weeds (including parasitic ones) selectively. Even the crop mulch/residues can also give desirable benefits. Not only the terrestrial weeds, even allelopathy can be suitably manipulated for the management of aquatic weeds. The allelochemicals present in the higher plants as well as in the microbes can be directly used for weed management on the pattern of herbicides. Their bioefficacy can be enhanced by structural changes or the synthesis of chemical analogues based on them. Further, in order to enhance the potential of allelopathic crops, several improvements can be made with the use of biotechnology or genomics and proteomics. In this context either the production of allelochemicals can be enhanced or the transgenics with foreign genes encoding for a particular weed-suppressing allelochemical could be produced. In the former, both conventional breeding and molecular genetical techniques are useful. However, with conventional breeding being slow and difficult, more emphasis is laid on the use of modern techniques such as molecular markers and the selection aided by them. Although the progress in this regard is slow, nevertheless some promising results are coming and more are expected in future. This review attempts to discuss all these aspects of allelopathy for the sustainable management of weeds. Referee: Dr. Amrjits S. Basra, Central Plains Crop Technology, 5912 North Meridian Avenue, Wichita, KS 67204  相似文献   

15.
Evolutionary-thinking in agricultural weed management   总被引:1,自引:1,他引:0  
Agricultural weeds evolve in response to crop cultivation. Nevertheless, the central importance of evolutionary ecology for understanding weed invasion, persistence and management in agroecosystems is not widely acknowledged. This paper calls for more evolutionarily-enlightened weed management, in which management principles are informed by evolutionary biology to prevent or minimize weed adaptation and spread. As a first step, a greater knowledge of the extent, structure and significance of genetic variation within and between weed populations is required to fully assess the potential for weed adaptation. The evolution of resistance to herbicides is a classic example of weed adaptation. Even here, most research focuses on describing the physiological and molecular basis of resistance, rather than conducting studies to better understand the evolutionary dynamics of selection for resistance. We suggest approaches to increase the application of evolutionary-thinking to herbicide resistance research. Weed population dynamics models are increasingly important tools in weed management, yet these models often ignore intrapopulation and interpopulation variability, neglecting the potential for weed adaptation in response to management. Future agricultural weed management can benefit from greater integration of ecological and evolutionary principles to predict the long-term responses of weed populations to changing weed management, agricultural environments and global climate.  相似文献   

16.
  • Despite increasing knowledge of the involvement of allelopathy in negative interactions among plants, relatively little is known about its action at the root level. This study aims to enhance understanding of interactions of roots between a crop and associated weeds via allelopathy.
  • Based on a series of experiments with window rhizoboxes and root segregation methods, we examined root placement patterns and root interactions between allelopathic rice and major paddy weeds Cyperus difformis, Echinochloa crus‐galli, Eclipta prostrata, Leptochloa chinensis and Oryza sativa (weedy rice).
  • Allelopathic rice inhibited growth of paddy weed roots more than shoots regardless of species. Furthermore, allelopathic rice significantly reduced total root length, total root area, maximum root width and maximum root depth of paddy weeds, while the weeds adjusted horizontal and vertical placement of their roots in response to the presence of allelopathic rice. With the exception of O. sativa (weedy rice), root growth of weeds avoided expanding towards allelopathic rice. Compared with root contact, root segregation significantly increased inhibition of E. crus‐galli, E. prostrata and L. chinensis through an increase in rice allelochemicals. In particular, their root exudates induced production of rice allelochemicals. However, similar results were not observed in C. difformis and O. sativa (weedy rice) with either root segregation or root exudate application.
  • The results demonstrate that allelopathic rice interferes with paddy weeds by altering root placement patterns and root interactions. This is the first case of a root behavioural strategy in crop–weed allelopathic interaction.
  相似文献   

17.
The question of whether annual weeds are allelopathic under natural conditions still remains to be critically answered. Investigations were carried out to understand the involvement and mode of operation of allelopathy in an annual weed, Polypogon monspeliensis. Comparative studies of soils associated with and without the weed under field conditions revealed that there was no significant difference in toxicity of the two soils, and thus the possibility of its allelopathic effect on crops grown in the same season could be ruled out. However, soil amended with weed straw had significantly higher total phenolics including higher relative concentrations of phenolic fractions that were not detected in unamended soil. Phenolic fractions significantly affected the seedling growth of radish and cluster bean. It is likely that P. monspeliensis did not interfere chemically with the crops cultivated during the same season, but interfered with the following season crop through incorporated straw. These results indicate how a monocarpic annual such as P. monspeliensis can be allelopathic under field conditions and allelopathic potential can be managed. We suggest that before detailed investigations on allelopathy are performed as per earlier recommended protocols, data on weed life cycle pattern and agricultural practices should be collected.  相似文献   

18.
The field of allelopathy is one of the most fascinating but controversial processes in plant ecology that offers an exciting, interdisciplinary, complex, and challenging study. In spite of the established role of soil microbes in plant health, their role has also been consolidated in studies of allelopathy. Moreover, allelopathy can be better understood by incorporating soil microbial ecology that determines the relevance of allelopathy phenomenon. Therefore, while discussing the role of allelochemicals in plant–plant interactions, the dynamic nature of soil microbes should not be overlooked. The occurrence and toxicity of allelochemicals in soil depend on various factors, but the type of microflora in the surroundings plays a crucial role because it can interfere with its allelopathic nature. Such microbes could be of prime importance for biological control management of weeds reducing the cost and ill effects of chemical herbicides. Among microbes, our main focus is on bacteria—as they are dominant among other microbes and are being used for enhancing crop production for decades—and fungi. Hence, to refer to both bacteria and fungi, we have used the term microbes. This review discusses the beneficial role of microbes in reducing the allelopathic effects of weeds. The review is mainly focused on various functions of bacteria in (1) reducing allelopathic inhibition caused by weeds to reduce crop yield loss, (2) building inherent defense capacity in plants against allelopathic weed, and (3) deciphering beneficial rhizospheric process such as chemotaxis/biofilm, degradation of toxic allelochemicals, and induced gene expression.  相似文献   

19.
In modern agriculture, natural plant communities may be replaced by a single crop species. Weeds, some microorganisms, and viruses, as well as some herbivores are organisms that should be eliminated. Pesticides and fertilizers not only affect the pests and crops, but soil, non-pest species, water, food, and humans. In traditional agriculture weeds are components with an important ecological role in the maintenance of the system. Some weeds have been used as tools to control the growth of other weeds in traditional agroecosystems. Researchers on sustainable and organic agriculture get valuable information from traditional agriculture and currently are conducting research on plant breeding, soil fertility and tillage, crop protection, and cropping systems. Allelopathy and chemical ecology are directly involved in each of these fields and can play an important role in crop productivity, conservation of genetic diversity, and maintenance of ecosystems stability. Allelopathy has been shown to be related with problems of chemical interference between crops and weeds, crops and crops, toxicity of crops and weeds residues, and/or crops and weeds exudates. Problems of autotoxicity, orchard replanting, and forest regeneration are also referred as allelopathic. Allelopathy is strongly coupled with other stresses of the environment, including insects and disease, temperature extremes, nutrient and moisture variables, radiation, and herbicides. These stress conditions often enhance allelochemical production and increase the potential for allelopathic interference. Allelopathy offers potential for weed control through the production and release of allelochemicals from plants. Allelochemicals may impact the availability of nutrients through effects on the symbiotic microbes. Destruction and changes in the use of soils in the tropics have decreased biodiversity, bringing about the loss of valuable natural products. Many different types of useful products such as natural pesticides and drugs can arise from allelopathy studies. New methods must be generated for allelopathy as a part of the biotic resources management strategies.  相似文献   

20.
农田杂草生态位研究的意义及方法探讨   总被引:28,自引:5,他引:23  
郭水良  李扬汉 《生态学报》1998,18(5):496-503
农田除草剂长期单一使用引起杂草种群的演变,增加了化学除草难度。预测除草剂作用下农田杂草群落的演变是当前迫切要求解决的问题。研究农田杂草生态位,揭示霜草种间生态心关系,结合杂草对除草剂敏感性资料,能够预测这种演变。本文以浙中油菜田为例,对该地区油菜田24种主要杂草的姓进行了七级目测,计测了它们的生态位宽度和生态位重叠值;汉生态位重叠值为指标,用极点排序和图论聚类分析中的最小生成树法,作出了反映杂草生  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号