首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Due to a growing market for the biodegradable and renewable polymer polylactic acid, the world demand for lactic acid is rapidly increasing. The tolerance of yeasts to low pH can benefit the process economy of lactic acid production by minimizing the need for neutralizing agents. Saccharomyces cerevisiae (CEN.PK background) was engineered to a homofermentative lactate-producing yeast via deletion of the three genes encoding pyruvate decarboxylase and the introduction of a heterologous lactate dehydrogenase (EC 1.1.1.27). Like all pyruvate decarboxylase-negative S. cerevisiae strains, the engineered strain required small amounts of acetate for the synthesis of cytosolic acetyl-coenzyme A. Exposure of aerobic glucose-limited chemostat cultures to excess glucose resulted in the immediate appearance of lactate as the major fermentation product. Ethanol formation was absent. However, the engineered strain could not grow anaerobically, and lactate production was strongly stimulated by oxygen. In addition, under all conditions examined, lactate production by the engineered strain was slower than alcoholic fermentation by the wild type. Despite the equivalence of alcoholic fermentation and lactate fermentation with respect to redox balance and ATP generation, studies on oxygen-limited chemostat cultures showed that lactate production does not contribute to the ATP economy of the engineered yeast. This absence of net ATP production is probably due to a metabolic energy requirement (directly or indirectly in the form of ATP) for lactate export.  相似文献   

2.
Industrial applications for lactate, such as the production of chemicals, has led to interest in producing this organic acid by metabolically engineered a yeast such as Saccharomyces cerevisiae, which is more acid tolerant than lactic acid bacteria. This paper deals with lactate production by S. cerevisiae K1-LDH, in which the Lactobacillus plantarum lactate dehydrogenase (LDH) gene is integrated into the genome of the wine yeast strain K1. We show that a vitamin, nicotinic acid (NiA), was the limiting factor for lactate production during fermentation with the K1-LDH strain. Increasing the NiA concentration in batch conditions or in the medium used to feed chemostats affected the lactate yield. Moreover, the addition of pulses of NiA or the exponential addition of NiA made it possible to control the lactate production kinetics throughout the fermentation process. The results point to the role of NiA in the regulation of metabolic pathways, but the physiological mechanisms remain poorly understood.  相似文献   

3.
4.
In this study, the immobilization technique involving photo-crosslinkable resin gels was used for lactic acid production. Saccharomyces cerevisiae OC-2T T165R, a metabolically engineered yeast that produces optically pure l(+)-lactic acid, was immobilized in hydrophilic photo-crosslinked resin gels as a biocatalyst. Three resin gels, TEP 1, TEP 2 and TEP 3, were examined and all of them showed high performance as to lactic acid production. Resin gel TEP 1, which exhibited the highest productivity among the resin gels was used for 15 consecutive batch fermentations without decreases in productivity and mechanical deformation, indicating that it was a suitable carrier for long-term lactic acid fermentation. Moreover, the use of the immobilization technique can improve the productivity of the metabolically engineered yeast in the fermentation with or without extraction, showing promise for using the immobilized engineered yeast for lactic acid production.  相似文献   

5.
Expression of a heterologous l-lactate dehydrogenase (l-ldh) gene enables production of optically pure l-lactate by yeast Saccharomyces cerevisiae. However, the lactate yields with engineered yeasts are lower than those in the case of lactic acid bacteria because there is a strong tendency for ethanol to be competitively produced from pyruvate. To decrease the ethanol production and increase the lactate yield, inactivation of the genes that are involved in ethanol production from pyruvate is necessary. We conducted double disruption of the pyruvate decarboxylase 1 (PDC1) and alcohol dehydrogenase 1 (ADH1) genes in a S. cerevisiae strain by replacing them with the bovine l-ldh gene. The lactate yield was increased in the pdc1/adh1 double mutant compared with that in the single pdc1 mutant. The specific growth rate of the double mutant was decreased on glucose but not affected on ethanol or acetate compared with in the control strain. The aeration rate had a strong influence on the production rate and yield of lactate in this strain. The highest lactate yield of 0.75 g lactate produced per gram of glucose consumed was achieved at a lower aeration rate.  相似文献   

6.
A plant- and crop-based renewable plastic, poly-lactic acid (PLA), is receiving attention as a new material for a sustainable society in place of petroleum-based plastics. We constructed a metabolically engineered Saccharomyces cerevisiae that has both pyruvate decarboxylase genes (PDC1 and PDC5) disrupted in the genetic background to express two copies of the bovine L-lactate dehydrogenase (LDH) gene. With this recombinant, the yield of lactate was 82.3 g/liter, up to 81.5% of the glucose being transformed into lactic acid on neutralizing cultivation, although pdc1 pdc5 double disruption led to ineffective decreases in cell growth and fermentation speed. This strain showed lactate productivity improvement as much as 1.5 times higher than the previous strain. This production yield is the highest value for a lactic acid-producing yeast yet reported.  相似文献   

7.
Acid-tolerant Saccharomyces cerevisiae was engineered to produce lactic acid by expressing heterologous lactate dehydrogenase (LDH) genes, while attenuating several key pathway genes, including glycerol-3-phosphate dehydrogenase1 (GPD1) and cytochrome-c oxidoreductase2 (CYB2). In order to increase the yield of lactic acid further, the ethanol production pathway was attenuated by disrupting the pyruvate decarboxylase1 (PDC1) and alcohol dehydrogenase1 (ADH1) genes. Despite an increase in lactic acid yield, severe reduction of the growth rate and glucose consumption rate owing to the absence of ADH1 caused a considerable decrease in the overall productivity. In Δadh1 cells, the levels of acetyl-CoA, a key precursor for biologically applicable components, could be insufficient for normal cell growth. To increase the cellular supply of acetyl-CoA, we introduced bacterial acetylating acetaldehyde dehydrogenase (A-ALD) enzyme (EC 1.2.1.10) genes into the lactic acid-producing S. cerevisiae. Escherichia coli-derived A-ALD genes, mhpF and eutE, were expressed and effectively complemented the attenuated acetaldehyde dehydrogenase (ALD)/acetyl-CoA synthetase (ACS) pathway in the yeast. The engineered strain, possessing a heterologous acetyl-CoA synthetic pathway, showed an increased glucose consumption rate and higher productivity of lactic acid fermentation. The production of lactic acid was reached at 142 g/L with production yield of 0.89 g/g and productivity of 3.55 g L−1 h−1 under fed-batch fermentation in bioreactor. This study demonstrates a novel approach that improves productivity of lactic acid by metabolic engineering of the acetyl-CoA biosynthetic pathway in yeast.  相似文献   

8.
9.
Weak organic acids are well-known metabolic effectors in yeast and other micro-organisms. High concentrations of lactic acid due to infection of lactic acid bacteria often occurs in combination with growth under nutrient-limiting conditions in industrial yeast fermentations. The effects of lactic acid on growth and product formation of Saccharomyces cerevisiae were studied, with cells growing under carbon- or nitrogen-limiting conditions in anaerobic chemostat cultures (D=0.1 h−1) at pH values 3.25 and 5. It was shown that lactic acid in industrially relevant concentrations had a rather limited effect on the metabolism of S. cerevisiae. However, there was an effect on the energetic status of the cells, i.e. lactic acid addition provoked a reduction in the adenosine triphosphate (ATP) content of the cells. The decrease in ATP was not accompanied by a significant increase in the adenosine monophosphate levels.  相似文献   

10.
Industrial production of lactic acid with the current pyruvate decarboxylase-negative Saccharomyces cerevisiae strains requires aeration to allow for respiratory generation of ATP to facilitate growth and, even under nongrowing conditions, cellular maintenance. In the current study, we observed an inhibition of aerobic growth in the presence of lactic acid. Unexpectedly, the cyb2Δ reference strain, used to avoid aerobic consumption of lactic acid, had a specific growth rate of 0.25 h−1 in anaerobic batch cultures containing lactic acid but only 0.16 h−1 in identical aerobic cultures. Measurements of aerobic cultures of S. cerevisiae showed that the addition of lactic acid to the growth medium resulted in elevated levels of reactive oxygen species (ROS). To reduce the accumulation of lactic acid-induced ROS, cytosolic catalase (CTT1) was overexpressed by replacing the native promoter with the strong constitutive TPI1 promoter. Increased activity of catalase was confirmed and later correlated with decreased levels of ROS and increased specific growth rates in the presence of high lactic acid concentrations. The increased fitness of this genetically modified strain demonstrates the successful attenuation of additional stress that is derived from aerobic metabolism and may provide the basis for enhanced (micro)aerobic production of organic acids in S. cerevisiae.Lactic acid is an organic acid with a wide range of applications. In the food industry, lactic acid has traditionally been used as an antimicrobial as well as a flavor enhancer. Besides having applications in textile, cosmetic, and pharmaceutical industries (5), lactic acid has been applied for the manufacture of lactic acid polymers (11, 40). These polymers have properties that are similar to those of petroleum-derived plastics. Skyrocketing oil prices caused by dwindling fossil fuel reserves coupled with pressures to tackle environmental issues are creating increased demand for bioderived, and often biodegradable, polymers, such as poly-lactic acid.Current industrial lactic acid fermentations are based on different species of lactic acid bacteria. These bacteria have complex nutrient requirements due to their limited ability to synthesize B vitamins and amino acids (8) and are intolerant to acidic conditions with a pH between 5.5 and 6.5 required for growth (40). Acidification of the growth medium during lactic acid fermentation is typically counteracted by the addition of neutralizing agents (e.g., CaCO3), resulting in the formation of large quantities of insoluble salts, such as gypsum, during downstream processing.Saccharomyces cerevisiae has received attention as a possible alternative biocatalyst. This organism is relatively tolerant to low pH and has simple nutrient requirements. The production of lactic acid with metabolically engineered S. cerevisiae was achieved by introducing a NAD+-dependent lactate dehydrogenase, leading to the simultaneous formation of both ethanol and lactate (1a, 12, 31, 32, 36). Further improvements were made by constructing a pyruvate decarboxylase-negative (Pdc) S. cerevisiae strain (1a, 31, 44) that converted glucose to lactic acid as the sole fermentation product.Although the redox balance and ATP generation in lactic acid fermentation are analogous to those in alcoholic fermentation, engineered homolactic S. cerevisiae strains could not sustain anaerobic growth (44). In addition, the lactate formation rate under anaerobic conditions in the presence of excess glucose was significantly lower than the specific ethanol production rate of the wild-type strain. Moreover, exposure of the anaerobic cell suspension to oxygen immediately led to a 2.5-fold increase in the lactate formation rate. The stimulatory effect of oxygen on lactic acid fermentation may reflect an energetic constraint in lactate fermentation, probably as a consequence of energy-dependent product export (42, 44). In agreement with this hypothesis, intracellular ATP concentrations and the related energy charge decrease rapidly during anaerobic homolactic fermentation by S. cerevisiae (1). Consequently, industrial production of lactic acid with S. cerevisiae may require (micro)aerobic conditions to allow for the generation of sufficient ATP to enable cell growth and, even under nongrowing conditions, maintenance.The formation of reactive oxygen species (ROS) during cellular respiration is an unavoidable side effect of aerobic life relying on oxygen as the final electron acceptor. At least 2% of oxygen consumed in mitochondrial respiration undergoes only one electron reduction, mainly by the semiquinone form of coenzyme Q, generating superoxide radicals (O2) (26). In addition, the prooxidant effects of organic acids have been demonstrated using sod mutants (30). An in vitro study by Ali et al. (3) also linked ROS formation to weak organic acids and showed enhanced hydroxy radical (OH) generation in the presence of lactic acid.Among different ROS, the hydroxy radical that originates from H2O2 in the metal-mediated Fenton/Haber-Weiss reactions is especially reactive. It indiscriminately oxidizes intracellular proteins, nucleic acids, and lipids in the cell membranes (4, 38). Lactate interacts with the ferric ion (Fe3+) to form a stable complex of Fe3+-lactate at a molar ratio of 1:2. This complex then reacts with H2O2 to enhance the OH generation via the Fenton reaction (2, 3). Although a similar in vivo mechanism has not yet been proven, previous research indicates that lactic acid and other weak organic acids enhance oxidative stress of aerobic yeast cultures.Like other eukaryotic organisms, S. cerevisiae possesses enzymatic defense mechanisms, including several crucial antioxidant enzymes, such as catalase and superoxide dismutase (SOD). SOD removes O2 by converting it to H2O2, which, in turn, can be disproportionated to water by catalase or glutathione peroxidase. Cytosolic catalase, Ctt1p, is thought to play a general role, as CTT1 expression is regulated by various stresses, including oxidative stress, osmotic stress, and starvation (15, 23, 33). More recently, catalase has also been implicated in response to acetic acid tolerance and acetic acid-induced programmed cell death (17, 47).The goals of the present study were to assess the in vivo relevance of lactate-mediated oxidative stress in S. cerevisiae and to investigate whether its effects could be ameliorated by enhanced expression of catalase.  相似文献   

11.
This work demonstrates the first example of a fungal lactate dehydrogenase (LDH) expressed in yeast. A L(+)-LDH gene, ldhA, from the filamentous fungus Rhizopus oryzae was modified to be expressed under control of the Saccharomyces cerevisiae adh1 promoter and terminator and then placed in a 2μ-containing yeast-replicating plasmid. The resulting construct, pLdhA68X, was transformed and tested by fermentation analyses in haploid and diploid yeast containing similar genetic backgrounds. Both recombinant strains utilized 92 g glucose/l in approximately 30 h. The diploid isolate accumulated approximately 40% more lactic acid with a final concentration of 38 g lactic acid/l and a yield of 0.44 g lactic acid/g glucose. The optimal pH for lactic acid production by the diploid strain was pH 5. LDH activity in this strain remained relatively constant at 1.5 units/mg protein throughout the fermentation. The majority of carbon was still diverted to the ethanol fermentation pathway, as indicated by ethanol yields between 0.25–0.33 g/g glucose. S. cerevisiae mutants impaired in ethanol production were transformed with pLdhA68X in an attempt to increase the lactic acid yield by minimizing the conversion of pyruvate to ethanol. Mutants with diminished pyruvate decarboxylase activity and mutants with disrupted alcohol dehydrogenase activity did result in transformants with diminished ethanol production. However, the efficiency of lactic acid production also decreased. Electronic Publication  相似文献   

12.
In this study, the immobilization technique involving photo-crosslinkable resin gels was used for lactic acid production. Saccharomyces cerevisiae OC-2T T165R, a metabolically engineered yeast that produces optically pure l(+)-lactic acid, was immobilized in hydrophilic photo-crosslinked resin gels as a biocatalyst. Three resin gels, TEP 1, TEP 2 and TEP 3, were examined and all of them showed high performance as to lactic acid production. Resin gel TEP 1, which exhibited the highest productivity among the resin gels was used for 15 consecutive batch fermentations without decreases in productivity and mechanical deformation, indicating that it was a suitable carrier for long-term lactic acid fermentation. Moreover, the use of the immobilization technique can improve the productivity of the metabolically engineered yeast in the fermentation with or without extraction, showing promise for using the immobilized engineered yeast for lactic acid production.  相似文献   

13.
The heterofermentative lactic acid bacteria Oenococcus oeni and Leuconostoc mesenteroides are able to grow by fermentation of pyruvate as the carbon source (2 pyruvate → 1 lactate + 1 acetate + 1 CO2). The growth yields amount to 4.0 and 5.3 g (dry weight)/mol of pyruvate, respectively, suggesting formation of 0.5 mol ATP/mol pyruvate. Pyruvate is oxidatively decarboxylated by pyruvate dehydrogenase to acetyl coenzyme A, which is then converted to acetate, yielding 1 mol of ATP. For NADH reoxidation, one further pyruvate molecule is reduced to lactate. The enzymes of the pathway were present after growth on pyruvate, and genome analysis showed the presence of the corresponding structural genes. The bacteria contain, in addition, pyruvate oxidase activity which is induced under microoxic conditions. Other homo- or heterofermentative lactic acid bacteria showed only low pyruvate fermentation activity.  相似文献   

14.
A high yield of lactic acid per gram of glucose consumed and the absence of additional metabolites in the fermentation broth are two important goals of lactic acid production by microrganisms. Both purposes have been previously approached by using a Kluyveromyces lactis yeast strain lacking the single pyruvate decarboxylase gene (KlPDC1) and transformed with the heterologous lactate dehydrogenase gene (LDH). The LDH gene was placed under the control the KlPDC1 promoter, which has allowed very high levels of lactate dehydrogenase (LDH) activity, due to the absence of autoregulation by KlPdc1p. The maximal yield obtained was 0.58 g g−1, suggesting that a large fraction of the glucose consumed was not converted into pyruvate. In a different attempt to redirect pyruvate flux toward homolactic fermentation, we used K. lactis LDH transformant strains deleted of the pyruvate dehydrogenase (PDH) E1α subunit gene. A great process improvement was obtained by the use of producing strains lacking both PDH and pyruvate decarboxylase activities, which showed yield levels of as high as 0.85 g g−1 (maximum theoretical yield, 1 g g−1), and with high LDH activity.  相似文献   

15.
A rapid and simple technique to follow CO2 release during fermentation of glucose by heterofermentative bacteria or yeasts was used in order to evaluate ethanol and lactate production in pure and mixed cultures of yeast and bacteria. In pure cultures, good correlations were found between gas pressure variations (deltaP) and ethanol or lactate production by yeasts or heterofermentative bacteria, and ratios between deltaP and ethanol or lactate produced could be established. In mixed cultures, ratios between maximal deltaP and total amount of glucose consumed were determined. It was thus possible to evaluate the amount of glucose that was consumed by each strain and then deduce the bacterial lactate production. Good results were obtained for mixed cultures of yeast and homofermentative bacteria. This technique may be useful to evaluate the activity of strains in mixed cultures of yeast and lactic acid bacteria.  相似文献   

16.
In this study, Saccharomyces cerevisiae OC-2T T165R, metabolically engineered to produce optically pure L(+)-lactic acid, was used to develop a high performance extractive fermentation process. Since the transgenic yeast could produce lactic acid efficiently even at lower than pH 3.5, high extractive efficiency was achieved when tri-n-decylamine (TDA), a tertiary amine, was used as the extractant. Separation of microorganisms by means of a hollow fiber module could not only improve the total amount of lactic acid produced but also increase the lactic acid concentration in the solvent. Moreover, pH had a significant effect on extractive fermentation. The highest rate of recovery of lactic acid could be obtained on pH-uncontrolled fermentation (pH 2.5); however, the lowest amount of lactic acid was produced. Taking into account the trade-off between the fermentation and extraction efficiencies, the optimum pH value was considered to be 3.5, with which the largest amount of lactic acid was produced and the highest lactic acid concentration in the solvent was obtained. The results show promise for the use of the transgenic yeast for extractive fermentation.  相似文献   

17.
The levels of yeasts and lactic acid bacteria that naturally developed during the vinification of two red and two white Bordeaux wines were quantitatively examined. Yeasts of the genera Rhodotorula, Pichia, Candida, and Metschnikowia occurred at low levels in freshly extracted grape musts but died off as soon as fermentation commenced. Kloeckera apiculata (Hanseniaspora uvarum), Torulopsis stellata, and Saccharomyces cerevisiae, the dominant yeasts in musts, proliferated to conduct alcoholic fermentation. K. apiculata and eventually T. stellata died off as fermentation progressed, leaving S. cerevisiae as the dominant yeast until the termination of fermentation by the addition of sulfur dioxide. At least two different strains of S. cerevisiae were involved in the fermentation of one of the red wines. Low levels of lactic acid bacteria (Pediococcus cerevisiae, Leuconostoc mesenteroides, and Lactobacillus spp.) were present in grape musts but died off during alcoholic fermentation. The malolactic fermentation developed in both red wines soon after alcoholic fermentation and correlated with the vigorous growth of at least three different strains of Leuconostoc oenos.  相似文献   

18.
A multicopy plasmid carrying the PDC1 gene (encoding pyruvate decarboxylase; Pdc) was introduced in Saccharomyces cerevisiae CEN.PK113-5D. The physiology of the resulting prototrophic strain was compared with that of the isogenic prototrophic strain CEN.PK113-7D and an empty-vector reference strain. In glucose-grown shake-flask cultures, the introduction of the PDC1 plasmid caused a threefold increase in the Pdc level. In aerobic glucose-limited chemostat cultures growing at a dilution rate of 0.10 h−1, Pdc levels in the overproducing strain were 14-fold higher than those in the reference strains. Levels of glycolytic enzymes decreased by ca. 15%, probably due to dilution by the overproduced Pdc protein. In chemostat cultures, the extent of Pdc overproduction decreased with increasing dilution rate. The high degree of overproduction of Pdc at low dilution rates did not affect the biomass yield. The dilution rate at which aerobic fermentation set in decreased from 0.30 h−1 in the reference strains to 0.23 h−1 in the Pdc-overproducing strain. In the latter strain, the specific respiration rate reached a maximum above the dilution rate at which aerobic fermentation first occurred. This result indicates that a limited respiratory capacity was not responsible for the onset of aerobic fermentation in the Pdc-overproducing strain. Rather, the results indicate that Pdc overproduction affected flux distribution at the pyruvate branch point by influencing competition for pyruvate between Pdc and the mitochondrial pyruvate dehydrogenase complex. In respiratory cultures (dilution rate, <0.23 h−1), Pdc overproduction did not affect the maximum glycolytic capacity, as determined in anaerobic glucose-pulse experiments.  相似文献   

19.
Production of Bakers' Yeast in Cheese Whey Ultrafiltrate   总被引:2,自引:1,他引:1       下载免费PDF全文
A process for the production of bakers' yeast in whey ultrafiltrate (WU) is described. Lactose in WU was converted to lactic acid and galactose by fermentation. Streptococcus thermophilus was selected for this purpose. Preculturing of S. thermophilus in skim milk considerably reduced its lag. Lactic fermentation in 2.3×-concentrated WU was delayed compared with that in unconcentrated whey, and fermentation could not be completed within 60 h. The growth rate of bakers' yeast in fermented WU differed among strains. The rate of galactose utilization was similar for all strains, but differences in lactic acid utilization occurred. Optimal pH ranges for galactose and lactic acid utilization were 5.5 to 6.0 and 5.0 to 5.5, respectively. The addition of 4 g of corn steep liquor per liter to fermented WU increased cell yields. Two sources of nitrogen were available for growth of Saccharomyces cerevisiae: amino acids (corn steep liquor) and ammonium (added during the lactic acid fermentation). Ammonium was mostly assimilated during growth on lactic acid. This process could permit the substitution of molasses by WU for the industrial production of bakers' yeast.  相似文献   

20.
Heterologous secretory expression of endoglucanase E (Clostridium thermocellum) and β-glucosidase 1 (Saccharomycopsis fibuligera) was achieved in Saccharomyces cerevisiae fermentation cultures as an α-mating factor signal peptide fusion, based on the native enzyme coding sequence. Ethanol production depends on simultaneous saccharification of cellulose to glucose and fermentation of glucose to ethanol by a recombinant yeast strain as a microbial biocatalyst. Recombinant yeast strain expressing endoglucanase and β-glucosidase was able to produce ethanol from β-glucan, CMC and acid swollen cellulose. This indicates that the resultant yeast strain of this study acts efficiently as a whole cell biocatalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号