首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
Plant transformation has emerged as an important tool to integrate foreign genes in the plant genome to modify the plants for desired traits. Though many techniques of plant transformation are available; getting single copy transgenic events and cost associated remains a big challenge. Thus Agrobacterium-mediated transformation remains the method of choice due to multiple advantages. In the present work a tissue culture free protocol of Agrobacterium-mediated transformation was optimized in safflower, an oil seed crop recalcitrant to transformation. As a proof of concept we selected pCAMBIA2300 gene cassette containing Arabidopsis specific delta 15 desaturase (FAD3) downstream to truncated seed specific promoter beta-conglycinin and optimized tissue culture free protocol of Agrobacterium-mediated transformation using embryos as explants. Addition of silwet L-77, sonication treatment, vacuum infiltration in infection medium and use of paper wicks in co-cultivation period increased the transformation efficiency to 19.3%. Further, success in transformation was confirmed via product accumulation in 21 independent transgenic events wherein oil in transformed seeds showed significant accumulation of alpha-linolenic acid (ALA; 18:3; n3) which is generated from linoleic acid (LA; 18:2; n3) in a FAD3 catalyzed reaction. The present protocol can be utilized to produce transgenic safflower with different desired characters.  相似文献   

2.
It is well established that small heat shock proteins (sHSPs) play an important role in thermotolerance in various organisms due to their abundance and diversity. In the present study, a chloroplast small heat shock protein gene (LeHSP21) from tomato (Lycopersicon esculentum cv PKM-1) was constitutively expressed in tobacco (Nicotiana tabacum L. cv Wisconsin 38) plants via Agrobacterium-mediated transformation. When compared to wild-type control plants, transgenic tobacco plants constitutively expressing LeHSP21, driven by the cauliflower mosaic virus 35S promoter, exhibited improved tolerance to both high temperature and oxidative stress. Furthermore, when the seedlings were subjected to high temperature treatment, the activities of anti-oxidative enzymes and the content of proline were significantly higher in transgenic plants than those in the wild-type plants. Our results presented here demonstrate the feasibility of improving high temperature and oxidative stress tolerance in plants through the expression of LeHSP21 gene.  相似文献   

3.

Aims

Seeds are vectors of a diversified microbiota including plant pathogens. To better understand transmission of common bacterial blight (CBB) agents to bean seeds, we analyzed the role of non-pathogenic xanthomonads on seed transmission efficiency and investigated the location of Xanthomonas citri pv. fuscans (Xcf) into seeds and plantlets.

Methods

Competition between CBB and NP strains was initially assessed in vitro and then extended in planta to monitor the impact of co-inoculation on Xcf seed transmission. Moreover, location of Xcf strains in seeds and seedlings was visualized using a combination of gfp-tagged strain and DOPE-FISH/CSLM.

Results

Whereas CBB agent growth was inhibited in vitro by some seed-borne non-pathogenic xanthomonads strains, these strains did not transmit efficiently to seed through floral pathway and did not affect Xcf seed transmission. Xcf cells were observed entering seed through vascular elements and parenchyma of funiculus, but also micropyle and testa. Xcf cells were observed, moreover, among other bacteria on radicle surfaces, especially tip, in cotyledons, and plumules.

Conclusions

CBB agents are more efficient than non-pathogenic xanthomonads in using the floral route to colonize seeds. CBB agents are located within different niches in the seed tissues up to the embryonic axis.
  相似文献   

4.
5.
Estimating the timing of flower bud formation in plants is essential to identify environmental factors that regulate floral transition. The presence of winter dormancy between the initiation of flowers and anthesis, characteristic of most trees in the temperate forests, hampers accurate estimation of the timing of floral transition. To overcome this difficulty, expression levels of flowering-time genes could be used as indicators of the timing of floral transition. Here, we evaluated the usefulness of molecular markers in estimating the timing of floral transition in Fagus crenata, a deciduous tree that shows intermittent and synchronized flowering at the population level. We selected FLOWERING LOCUS T (FT) as a candidate molecular marker and quantified the expression levels of its ortholog in F. crenata (FcFT). Subsequently, we analyzed the relationship between morphogenetic changes that occur between the vegetative state of the buds and the initiation of floral organs, and compared the FcFT expression levels in reproductive and vegetative buds, collected from spring to autumn. FcFT expression in leaves peaked at least two weeks before the morphological changes associated with flowering were visible in the buds in late July. FcFT expression levels were significantly higher in the reproductive buds than in the vegetative buds in July. These results suggest that the FcFT expression in July is a reliable indicator of the timing and occurrence of floral transition. This study highlights the utility of molecular tools in unraveling reproductive dynamics in plants, in combination with ecological and physiological approaches.  相似文献   

6.
Seashore paspalum (Paspalum vaginatum O. Swartz) is an important warm-season turfgrass with great salinity tolerance. Based on establishment of embryogenic callus induction and regeneration from different mature seeds of ‘Sea Spray’, an Agrobacterium tumefaciens-mediated transformation was established and optimized in this study. Three clones of callus were selected for examining transformation conditions using Agrobacterium tumefaciens strain AGL1 carrying the binary vector pCAMBIA1305.2, containing β-glucuronidase (GUS) as a reporter gene and hygromycin phosphotransferase (HPT) as a selective marker gene. The results showed that a high transient transformation efficiency was observed by using Agrobacterium concentration of OD600?=?0.6, 5 min of sonication treatment during Agrobacterium infection, and 2 d of co-cultivation. By using the optimized transformation conditions, transgenic seashore paspalum plants were obtained. PCR and Southern blot analysis showed that T-DNA was integrated into the genomes of seashore paspalum. GUS staining experiments showed that the GUS gene was expressed in transgenic plants. Our results suggested that the transformation protocol will provide an effective tool for breeding of seashore paspalum in the future.  相似文献   

7.
Choline monooxygenase (CMO) is a key enzyme involved in betaine synthesis and our preliminary work has shown that the SlCMO gene promoter (pC5: ??267 to +?128 base pair), cloned from Suaeda liaotungensis, is salt-inducible. In the present study, pC5-SlCMO was transferred into tomato (Solanum lycopersicon L. ‘Micro-Tom’) plants via Agrobacterium mediation. Homozygous transgenic plants were selected using quantitative real-time polymerase chain reaction. The expression of SlCMO in pC5-SlCMO transgenic plants was induced by salinity. Under salt tolerance, betaine content, chlorophyll content, and net photosynthetic rate were higher in transgenic plants than in wild-type (WT) plants. Proline content was lower in transgenic plants than in WT plants. Under normal conditions, seed germination, length of the whole plant, dry weight, and fruit products of transgenic plants were the same as in WT plants. These results demonstrated that the pC5 promoter can drive increased expression of SlCMO in transgenic tomato plants under salt stress and increase salt tolerance without affecting plant growth and yield.  相似文献   

8.
The amino acid sequence of APX4 is similar to other ascorbate peroxidases (APXs), a group of proteins that protect plants from oxidative damage by transferring electrons from ascorbate to detoxify peroxides. In this study, we characterized two apx4 mutant alleles. Translational fusions with GFP indicated APX4 localizes to chloroplasts. Both apx4 mutant alleles formed chlorotic cotyledons with significantly reduced chlorophyll a, chlorophyll b and lutein. Given the homology of APX to ROS-scavenging proteins, this result is consistent with APX4 protecting seedling photosystems from oxidation. The growth of apx4 seedlings was stunted early in seedling development. In addition, APX4 altered seed quality by affecting seed coat formation. While apx4 seed development appeared normal, the seed coat was darker and more permeable than the wild type. In addition, accelerated aging tests showed that apx4 seeds were more sensitive to environmental stress than the wild-type seeds. If APX4 affects seed pigment biosynthesis or reduction, the seed coat color and permeability phenotypes are explained. apx4 mutants had cotyledon chlorosis, increased H2O2 accumulation, and reduced soluble APX activity in seedlings. These results indicate that APX4 is involved in the ROS-scavenging process in chloroplasts.  相似文献   

9.
The florist’s Gloxinia, Sinningia speciosa, which bears considerable flower trait variations, is an emerging model plants to study floral traits development. However, the investigation of the genetic information linking these floral traits is limited due to a lack of a reliable and efficient transformation system for functional studies. This study aims to optimize a stable genetic transformation system for S. speciosa. Detailed regeneration process and tissue culture parameters are also elucidated. The results show that the plant regeneration, initiated from a single perivascular parenchyma cell, can be induced from leaf and petiole explants in the presence of 1 mg/mL 6-benzylaminopurine (BA) and 0.1 mg/mL naphthalene-acetic acid (NAA) through embryogenesis. In the presence of 0.1 mg/mL NAA only, the adventitious roots form prior to the re-differentiation of shoot tissues in leaf explants. When the proximal end of the petiole is orientated upright with the distal end to the medium, it results in higher success of regeneration, suggesting that hormone supplies must follow endogenous basipetal auxin polarity. Using a glucuronidase (GUS) reporter gene construct, maximum transformation (3.13%) was obtained after a 3 day pre-culture and 5 day co-culture from cotyledons and leaves of 3-week-old seedlings inoculating Agrobacterium strain EHA105. The putative transgenic lines were validated by RT-PCR, Southern blotting and GUS activity. Our result demonstrates that young seedlings are the best material for transformation, probably because young leaves are only a few cell layers thick allowing inner perivascular cell (the origin of regeneration) to be more accessible for Agrobacterium infiltration.  相似文献   

10.
Many farmer-popular indica rice (Oryza sativa L.) cultivars are recalcitrant to Agrobacterium-mediated transformation through tissue culture and regeneration. In planta transformation using Agrobacterium could therefore be a useful alternative for indica rice. A simple and reproducible in planta protocol with higher transformation efficiencies than earlier reports was established for a recalcitrant indica rice genotype. Agrobacterium tumefaciens containing the salt tolerance-enhancing Pea DNA Helicase45 (PDH45) gene, with the reporter and selectable marker genes, gus-INT (β-glucuronidase with intron) and hygromycin phosphotransferase (hpt), respectively, were used. Overnight-soaked mature embryos were infected and allowed to germinate, flower, and set T1 seeds. T0 plants were considered positive for the transgene if the spikelets of one or more of their panicles were positive for gus. Thereafter, selection at T1 was done by germination in hygromycin and transgenic status re-confirmation by subjecting plantlet DNA/RNA to gene-specific PCR, Southern and semi-quantitative RT-PCR. Additionally, physiological screening under saline stress was done at the T2 generation. Transformation efficiency was found to be 30–32% at the T0 generation. Two lines of the in planta transformed seedlings of the recalcitrant rice genotype were shown to be saline tolerant having lower electrolyte leakage, lower Na+/K+, minimal leaf damage, and higher chlorophyll content under stress, compared to the WT at the T2 generation.  相似文献   

11.
12.
The FDA-approved anti-cancer compound paclitaxel is currently produced commercially by Taxus plant cell suspension cultures. One major limitation to the use of plant cell culture as a production platform is the low and variable product yields. Therefore, methods to increase and stabilize paclitaxel production are necessary to ensure product security, especially as the demand for paclitaxel continues to rise. Although a stable transformation method for Taxus suspension cultures has been developed, stable transformant yields are low (around 1% of experiments) and the method does not translate to the Taxus cuspidata Siebold and Zucc. and Taxus canadensis Marshall cell lines utilized in this study. Therefore, a new method for Agrobacterium-mediated transformation of Taxus callus and suspension cultures was developed through identification of the optimal Agrobacterium strain, inclusion of an anti-necrotic cocktail (silver nitrate, cysteine, and ascorbic acid) and increased recovery time for cells after cocultivation, the time following infection with Agrobacterium tumefaciens. Application of the increased recovery time to transformation of T. cuspidata line PO93XC resulted in 200 calluses staining positive for GUS. Additionally, two transgenic lines have been maintained with stable transgene expression for over 5 yr. This method represents an improvement over existing transformation methods for Taxus cultures and can be applied for future metabolic engineering efforts.  相似文献   

13.
14.
15.
16.
Songnen meadow grassland is a typical saline-alkaline land majorly comprised of carbonate soil. Salix mongolica, a woody species with high adaptability to carbonate soil, is an important supplementary feed in the grassland. Therefore, it is necessary to cultivate new varieties of S. mongolica by using genetic engineering methods to reveal the functions of the plant’s related genes and to construct a plant regeneration and genetic transformation system. In this study, we used leaves of S. mongolica as the explants for induction of leaf-based callus, differentiation of adventitious buds and rooting of adventitious by adding different ratios of 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzyl aminopurine and naphthaleneacetic acid into the Murashige and Skoog medium. Under the screening conditions of 7.5 mg L?1 hygromycin B and transformation period of 2–5 min using a specific Agrobacterium containing pCXSN-gus plasmids infection concentration (ODλ600?=?0.5), we obtained transgenic strains. PCR detected exogenous gus gene integrated into the chromosome of S. mongolica, Southern blot analysed the T0 transgenic strains single copy inserted into the chromosome, Northern hybridization signals indicated that gus gene mRNA was expressed in the five contemporary transgenic strains. The infected callus, adventitious buds, and regenerated plants displayed a blue color through detection by GUS staining, which reflected the activity of ß-glucuronidase enzyme. This result demonstrated the successful establishment of an Agrobacterium-mediated genetic transformation system from the callus (S. mongolica leaf as a transformation receptor).  相似文献   

17.
The tomato bZIP2-encoding gene was inserted into the Nicotiana benthamiana genome using Agrobacterium-mediated transformation to characterize resistance to oxidative stress and two herbicides, glyphosate and paraquat. We produced transgenic tobacco plants using the LebZIP2 gene, which were then utilized to examine salt stress and herbicide resistance through oxidative mechanisms. Transgenic LebZIP2-overexpressing plants were examined using specific primers for selection marker genes (PCR using genomic DNA) and target genes (RT-PCR). Based on microscopic examination, we observed an increase in leaf thickness and cell number in transgenic plants. The electrolyte leakage of leaves suggested that LebZIP2-overexpressing lines were weak tolerant to NaCl stress and resistant to methyl viologen. During our analysis, transgenic lines were exposed to different herbicides. Transgenic plants showed an increased tolerance based on visual injury, as well as an increased biomass. Based on these results, the LebZIP2 gene may be involved in oxidative stress tolerance and cell development in plants.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号