首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The kidney is an organ playing an important role in ion regulation in both freshwater (FW) and seawater (SW) fish. The mechanisms of ion regulation in the fish kidney are less well studied than that of their gills, especially at the level of transporter proteins. We have found striking differences in the pattern of Na+/K+/2Cl- cotransporter (NKCC) expression between species. In the killifish kidney, NKCC is apically localized in the distal and collecting tubules and basolaterally localized in the proximal tubules. However, in the SW killifish gill, NKCC is basolaterally co-localized with Na+/K+-ATPase, whereas in FW, NKCC immunoreactivity is primarily apical, although still colocalized within the same mitochondria-rich cell with basolateral Na+/K+-ATPase. Rainbow trout kidney has NKCC only in the apical membrane of the distal and collecting tubules in both environments, with no signal being detected in the proximal tubule. On the other hand, in the trout gill, NKCC is found basolaterally in both FW and SW environments. An important observation is that, in the gills of rainbow trout, the trailing edge of the filament possesses mostly Na+/K+-ATPase-positive but NKCC-negative mitochondria-rich cells, whereas in the region between and at the roots of the gill lamellae, most mitochondria-rich cells exhibit both Na+/K+-ATPase- and NKCC-positive immunoreactivity. These results suggest that the differential localization of transporters between the two species represents differences in function between these two euryhaline fishes with different life histories and strategies. Funding for this research was provided by NSERC Discovery Grants to G.G.G. and W.S.M., an Alberta Ingenuity Fund PDF, and a fellowship from the NSERC Research Capacity Development Grant to F.K.  相似文献   

2.
The endolymphatic sac (ES) is a part of the membranous labyrinth. ES is believed to perform endolymph absorption, which is dependent on several ion transporters, including Na+/K+/2Cl cotransporter type 2 (NKCC-2) and Na+/K+-ATPase. NKCC-2 is typically recognized as a kidney-specific ion transporter expressed in the apical membrane of the absorptive epithelium. NKCC-2 expression has been confirmed only in the rat and human ES other than the kidney, but the detailed localization features of NKCC-2 have not been investigated in the ES. Thus, we evaluated the specific site expressing NKCC-2 by immunohistochemical assessment. NKCC-2 expression was most frequently seen in the intermediate portion of the ES, where NKCC-2 is believed to play an important role in endolymph absorption. In addition, NKCC-2 expression was also observed on the apical membranes of ES epithelial cells, and Na+/K+-ATPase coexpression was observed on the basolateral membranes of ES epithelial cells. These results suggest that NKCC-2 performs an important role in endolymph absorption and that NKCC-2 in apical membranes and Na+/K+-ATPase in basolateral membranes work coordinately in the ES in a manner similar to that in renal tubules. (J Histochem Cytochem 58:759–763, 2010)  相似文献   

3.
4.

Background

Acute renal failure is a serious complication of human envenoming by Bothrops snakes. The ion pump Na+/K+-ATPase has an important role in renal tubule function, where it modulates sodium reabsorption and homeostasis of the extracellular compartment. Here, we investigated the morphological and functional renal alterations and changes in Na+/K+-ATPase expression and activity in rats injected with Bothrops alternatus snake venom.

Methods

Male Wistar rats were injected with venom (0.8 mg/kg, i.v.) and renal function was assessed 6, 24, 48 and 72 h and 7 days post-venom. The rats were then killed and renal Na+/K+-ATPase activity was assayed based on phosphate release from ATP; gene and protein expressions were assessed by real time PCR and immunofluorescence microscopy, respectively.

Results

Venom caused lobulation of the capillary tufts, dilation of Bowman's capsular space, F-actin disruption in Bowman's capsule and renal tubule brush border, and deposition of collagen around glomeruli and proximal tubules that persisted seven days after envenoming. Enhanced sodium and potassium excretion, reduced proximal sodium reabsorption, and proteinuria were observed 6 h post-venom, followed by a transient decrease in the glomerular filtration rate. Gene and protein expressions of the Na+/K+-ATPase α1 subunit were increased 6 h post-venom, whereas Na+/K+-ATPase activity increased 6 h and 24 h post-venom.

Conclusions

Bothrops alternatus venom caused marked morphological and functional renal alterations with enhanced Na+/K+-ATPase expression and activity in the early phase of renal damage.

General significance

Enhanced Na+/K+-ATPase activity in the early hours after envenoming may attenuate the renal dysfunction associated with venom-induced damage.  相似文献   

5.
Summary The (Na++K+)-ATPase of garfish olfactory nerve axon plasma membrane was purified about sixfold by treatment of the membrane with sodium dodecyl sulfate followed by sucrose density gradient centrifugation. The estimated molecular weights of the two major polypeptide components of the enzyme preparation on sodium dodecyl sulfate gels were 110,000 and 42,000 daltons, which were different from those of the corresponding peptides of rabbit kidney (Na++K+)-ATPase. No carbohydrate was detected in the 42,000-dalton component either by the periodic acid-Schiff reagent or by the more sensitive concanavalin A-peroxidase staining procedure. The molecular properties of the garfish (Na++K+)-ATPase, such as theK m for ATP, pH optimum, energies of activation, Na and K ion dependence and vanadium inhibition, were, however, similar to those of the kidney enzyme.The partially purified garfish (Na++K+)-ATPase was reconstituted into phospholipid vesicles by a freeze-thaw-sonication procedure. The reconstituted enzyme was found to catalyze a time and ATP dependent22Na+ transport. The ratio of22Na+ pumped to ATP hydrolyzed was about 1; under the same reconstitution and assay conditions, eel electroplax (Na++K+)-ATPase, however, gave a22Na+ pumped to ATP hydrolyzed ratio of nearly 3.  相似文献   

6.
In different species and tissues, a great variety of hormones modulate Na+,K+-ATPase activity in a short-term fashion. Such regulation involves the activation of distinct intracellular signaling networks that are often hormone- and tissue-specific. This minireview focuses on our own experimental observations obtained by studying the regulation of the rodent proximal tubule Na+,K+-ATPase. We discuss evidence that hormones responsible for regulating kidney proximal tubule sodium reabsorption may not affect the intrinsic catalytic activity of the Na+,K+-ATPase, but rather the number of active units within the plasma membrane due to shuttling Na+,K+-ATPase molecules between intracellular compartments and the plasma membrane. These processes are mediated by different isoforms of protein kinase C and depend largely on variations in intracellular sodium concentrations.  相似文献   

7.
Marine teleosts drink large amounts of seawater to compensate for continuous osmotic water loss. We investigated a possible significant role of the rectum in water absorption in seawater-adapted eel. In rectal sacs filled with balanced salt solution (BSS) and incubated in isotonic BSS, water absorption was greater in seawater-adapted eel than in freshwater eel. Since rectal fluid osmolality was slightly lower than plasma osmolality in seawater-adapted eel, effects of rectal fluid osmolality on water absorption were examined in rectal sacs filled with artificial rectal fluid with different osmolality. Rectal water absorption was greater at lower rectal fluid osmolality, suggesting that an osmotic gradient between the blood and rectal fluid drives the water movement. Ouabain, a specific inhibitor of Na+/K+-ATPase, inhibited water absorption in rectal sacs, indicating that an osmotic gradient favorable to rectal water absorption was created by ion uptake driven by Na+/K+-ATPase. Expression levels of aquaporin 1 (AQP1), a water-selective channel, were significantly higher in the rectum than in the anterior and posterior intestines. Immunoreaction for Na+/K+-ATPase was detected in the mucosal epithelial cells in the rectum with more intense staining in the basal half than in the apical half, whereas AQP1 was located in the apical membrane of Na+/K+-ATPase-immunoreactive epithelial cells. The rectum is spatially separated from the posterior intestine by a valve structure and from the anus by a sphincter. Such structures allow the rectum to swell as intestinal fluid flows into it, and a concomitant increase in hydrostatic pressure may provide an additional force for rectal water absorption. Our findings indicate that the rectum contributes greatly to high efficiency of intestinal water absorption by simultaneous absorption of ions and water.  相似文献   

8.
Hickey KD  Buhr MM 《Theriogenology》2012,77(7):1369-1380
Existing as a ubiquitous transmembrane protein, Na+K+-ATPase affects sperm fertility and capacitation through ion transport and a recently identified signaling function. Functional Na+K+-ATPase is a dimer of α and β subunits, each with isoforms (four and three, respectively). Since specific isoform pairings and locations may influence or indicate function, the objective of this study was to identify and localize subunits of Na+K+-ATPase in fresh bull sperm by immunoblotting and immunocytochemistry using antibodies against α1 and 3, and all β isoforms. Relative quantity of Na+K+-ATPase in head plasma membranes (HPM's) from sperm of different bulls was determined by densitometry of immunoblot bands, and compared to bovine kidney. Sperm and kidney specifically bound all antibodies at kDa equivalent to commercial controls, and to additional lower kDa bands in HPM. Immunofluorescence of intact sperm confirmed that all isoforms were present in the head region of sperm and that α3 was also uniformly distributed post-equatorially. Permeabilization exposing internal membranes typically resulted in an increase in fluorescence, indicating that some antibody binding sites were present on the inner surface of the HPM or the acrosomal membrane. Deglycosylation of β1 reduced the kDa of bands in sperm, rat brain and kidney, with the kDa of the deglycosylated bands differing among tissues. Two-dimensional blots of β1 revealed three distinct spots. Based on the unique quantity, location and structure Na+K+-ATPase subunits in sperm, we inferred that this protein has unique functions in sperm.  相似文献   

9.
Reabsorption of monovalent ions in the kidney is essential for adaptation to freshwater and seawater in teleosts. To assess a possible role of Na+/H+ exchanger 3 (NHE3) in renal osmoregulation, we first identified a partial sequence of cDNA encoding NHE3 from the Japanese eel kidney. For comparison, we also identified cDNAs encoding kidney specific Na+–K+–2Cl? cotransporter 2 (NKCC2α) and Na+–Cl? cotransporter (NCCα). In eels acclimated to a wide range of salinities from deionized freshwater to full-strength seawater, the expression of NHE3 in the kidney was the highest in eel acclimated to full-strength seawater. Meanwhile, the NCCα expression exhibited a tendency to increase as the environmental salinity decreased, whereas the NKCC2α expression was not significantly different among the experimental groups. Immunohistochemical studies showed that NHE3 was localized to the apical membrane of epithelial cells composing the second segments of the proximal renal tubule in seawater-acclimated eel. Meanwhile, the apical membranes of epithelial cells in the distal renal tubule and collecting duct showed more intense immunoreactions of NKCC2α and NCCα, respectively, in freshwater eel than in seawater eel. These findings suggest that renal monovalent-ion reabsorption is mainly mediated by NKCC2α and NCCα in freshwater eel and by NHE3 in seawater eel.  相似文献   

10.
Summary An antibody to the 96 kD -subunit of the Na+, K+ -ATPase from Bufo marinus has been used in immunostaining rat kidney and salivary glands. Intense staining was observed on basolateral membranes of distal tubules of the kidney and striated ducts of the three major salivary glands. Less intense staining was seen on the basolateral membranes of parotid acinar cells, but no staining was seen on the acinar cells of submandibular or sublingual glands. These sites of staining have been shown, by other methods, to posses substantial Na+, K+ -ATPase, indicating that the antibody recognizes antigenic determinants of the sodium pump highly conserved in the course of evolution. In addition, staining with this antibody was observed at the apical region of cells of the proximal straight tubule and of the papillary collecting duct in the kidney. Absorption studies suggest that the apical antigenic determinants are the same or closely related to each other but are distinct from basolateral antigenic determinants.  相似文献   

11.
The involvement of the antennal urinary glands in the ontogeny of osmoregulatory functions was investigated during the development of Astacus leptodactylus by measurements of hemolymph and urine osmolality in juvenile and adult crayfish and by the immunodetection of the enzyme Na+,K+-ATPase. In stage II juveniles, 1-year-old juveniles, and adults, all of which were maintained in freshwater, urine was significantly hypotonic to hemolymph. In adults, chloride and sodium concentrations were much lower in urine than in hemolymph. During embryonic development, Na+,K+-ATPase was detected by immunocytochemistry in ionocytes lining the tubule and the bladder, at an eye index (EI) of 220–250 m, and in the labyrinth, at EI 350 m. In all regions, immunofluorescence was mainly located at the basolateral side of the cells. No immunofluorescence was detected at any stage in the coelomosac. In late embryonic stages (EI 410–440 m), in stage I juveniles, and in adults, strong positive immunofluorescence was found from the labyrinth up to and including the bladder. These results show that, as early as hatching, juvenile crayfish are able to produce dilute urine hypotonic to hemolymph. This ability originates from the presence of Na+,K+-ATPase in ion-transporting cells located in the labyrinth, the tubule, and the bladder of the antennal glands and constitutes one of the main adaptations of crayfish to freshwater.We thank the University of Tarbiat Modarres and Ministry of Science, Research and Technology, Islamic Republic of Iran for financial aid and support. Special thanks are also due to the Société Française dExportation des Ressources Educatives (SFERE) for the scholarship to S.K.  相似文献   

12.
Previous evidence from this laboratory indicated that catecholamines and brain endogenous factors modulate Na+, K+-ATPase activity of the synaptosomal membranes. The filtration of a brain total soluble fraction through Sephadex G-50 permitted the separation of two fractions-peaks I and II-which stimulated and inhibited Na+, K+-ATPase, respectively (Rodríguez de Lores Arnaiz and Antonelli de Gomez de Lima, Neurochem. Res.11, 1986, 933). In order to study tissue specificity a rat kidney total soluble was fractionated in Sephadex G-50 and kidney peak I and II fractions were separated; as control, a total soluble fraction prepared from rat cerebral cortex was also processed. The UV absorbance profile of the kidney total soluble showed two zones and was similar to the profile of the brain total soluble. Synaptosomal membranes Na+, K+- and Mg2+-ATPases were stimulated 60–100% in the presence of kidney and cerebral cortex peak I; Na+, K+-ATPase was inhibited 35–65% by kidney peak II and 60–80% by brain peak II. Mg2+-ATPase activity was not modified by peak II fractions. ATPases activity of a kidney crude microsomal fraction was not modified by kidney peak I or brain peak II, and was slightly increased by kidney peak II or brain peak I. Kidney purified Na+, K+-ATPase was increased 16–20% by brain peak I and II fractions. These findings indicate that modulatory factors of ATPase activity are not exclusive to the brain. On the contrary, there might be tissue specificity with respect to the enzyme source.  相似文献   

13.
A heat-labile, non-dialysable and protease-sensitive endogenous activator (NaAF) capable of stimulating the Na+, K+-ATPase system has been demonstrated. The activator (NaAF) activity was partially enriched (about 10 fold) by dialysis (30 kDa cutoff) under negative pressure and pH 4.8 precipitation. The NaAF has been found to occur in the cytosolic fractions of tissues such as the kidney and brain from two different species (rabbit and pig) tested so far. Also, the factor from one tissue stimulates with equal efficacy the Na+, K+-ATPase systems of other tissues regardless of the species; thus demonstrating universal nature of the activator. Some degree of cross-reactivity was noted between the activating effects of this activator (for the Na+,K+-ATPase) and that for the H+,K+-ATPase recently described (J. Biol. Chem. 262:5664–5670, 1987). The purified NaAF obtained from sephacryl S-300 column chromatography activates the pure renal medullary Na+,K+-ATPase in a dose dependent manner.A preliminary account of this work was published in Fed. Proc. 46(4): 4466, 1987  相似文献   

14.
A protein isolated from goat testis cytosol is found to inhibit Na+,K+-ATPase from rat brain microsomes. The inhibitor has been purified by ammonium sulphate precipitation followed by hydroxyapatite column chromatography. The purified fraction appears as a single polypeptide band on 10% SDS-PAGE of approximate molecular mass of 70 kDa. The concentration at which 50% inhibition (I50) occurs is in the nanomolar range. The inhibitor seems to bind Na+,K+-ATPase reversibly at ATP binding site in a competitive manner with ATP, but away from ouabain binding site. It does not affect p-nitrophenyl-phosphatase activity. The inhibitor is found to inhibit the phosphorylation step of the Na+,K+-ATPase. The enhancement of tryptophan fluorescence and changes in CD pattern suggest conformational changes of Na+,K+-ATPase on binding to the inhibitor. Amino acid sequence of the trypsinised fragments show some homology with aldehyde reductase.  相似文献   

15.
This study examined the osmoregulatory status of the euryhaline elasmobranch Carcharhinus leucas acclimated to freshwater (FW) and seawater (SW). Juvenile C. leucas captured in FW (3 mOsm l–1 kg–1) were acclimated to SW (980–1,000 mOsm l–1 kg–1) over 16 days. A FW group was maintained in captivity over a similar time period. In FW, bull sharks were hyper-osmotic regulators, having a plasma osmolarity of 595 mOsm l–1 kg–1. In SW, bull sharks had significantly higher plasma osmolarities (940 mOsm l–1 kg–1) than FW-acclimated animals and were slightly hypo-osmotic to the environment. Plasma Na+, Cl, K+, Mg2+, Ca2+, urea and trimethylamine oxide (TMAO) concentrations were all significantly higher in bull sharks acclimated to SW, with urea and TMAO showing the greatest increase. Gill, rectal gland, kidney and intestinal tissue were taken from animals acclimated to FW and SW and analysed for maximal Na+/K+-ATPase activity. Na+/K+-ATPase activity in the gills and intestine was less than 1 mmol Pi mg–1 protein h–1 and there was no difference in activity between FW- and SW-acclimated animals. In contrast Na+/K+-ATPase activity in the rectal gland and kidney were significantly higher than gill and intestine and showed significant differences between the FW- and SW-acclimated groups. In FW and SW, rectal gland Na+/K+-ATPase activity was 5.6±0.8 and 9.2±0.6 mmol Pi mg–1 protein h–1, respectively. Na+/K+-ATPase activity in the kidney of FW and SW acclimated animals was 8.4±1.1 and 3.3±1.1 Pi mg–1 protein h–1, respectively. Thus juvenile bull sharks have the osmoregulatory plasticity to acclimate to SW; their preference for the upper reaches of rivers where salinity is low is therefore likely to be for predator avoidance and/or increased food abundance rather than because of a physiological constraint.  相似文献   

16.
Two K+ ATP channel blockers, 5-hydroxydecanoate (5-HD) and glyburide, are often used to study cross-talk between Na+/K+-ATPase and these channels. The aim of this work was to characterize the effects of these blockers on purified Na+/K+-ATPase as an aid to appropriate use of these drugs in studies on this cross-talk. In contrast to known dual effects (activating and inhibitory) of other fatty acids on Na+/K+-ATPase, 5-HD only inhibited the enzyme at concentrations exceeding those that block mitochondrial K+ ATP channels. 5-HD did not affect the ouabain sensitivity of Na+/K+-ATPase. Glyburide had both activating and inhibitory effects on Na+/K+-ATPase at concentrations used to block plasma membrane K+ ATP channels. The findings justify the use of 5-HD as specific mitochondrial channel blocker in studies on the relation of this channel to Na+/K+-ATPase, but question the use of glyburide as a specific blocker of plasma membrane K+ ATP channels, when the relation of this channel to Na+/K+-ATPase is being studied.  相似文献   

17.
The basolateral membranes of kidney proximal tubule cells have (Na++K+)-ATPase and Na+-ATPase activities, involved in Na+ reabsorption. We showed that ceramide (Cer) modulates protein kinase A (PKA) and protein kinase C (PKC), which are involved in regulating ion transporters. Here we show that ceramide, promotes 60% inhibition of Na+-ATPase activity (I50 ≈ 100 nM). This effect was completely reversed by inhibiting PKA but did not involve the classic PKC signaling pathway. In these membranes we found the Cer-activated atypical PKC zeta (PKCζ) isoform. When PKCζ is inhibited, Cer ceases to inhibit the Na+-ATPase, allowing the cAMP/PKA signaling pathway to recover its stimulatory effect on the pump. There were no effects on the (Na++K+)-ATPase. These results reveal Cer as a potent physiological modulator of the Na+-ATPase, participating in a regulatory network in kidney cells and counteracting the stimulatory effect of PKA via PKCζ.  相似文献   

18.
K+-Cl cotransporter-3 has two major amino terminal variants, KCC3a and KCC3b. In LLC-PK1 cells, exogenously expressed KCC3a co-immunoprecipitated with endogenous Na+,K+-ATPase α1-subunit (α1NaK), accompanying significant increases of the Na+,K+-ATPase activity. Exogenously expressed KCC3b did not co-immunoprecipitate with endogenous α1NaK inducing no change of the Na+,K+-ATPase activity. A KCC inhibitor attenuated the Na+,K+-ATPase activity in rat gastric mucosa in which KCC3a is predominantly expressed, while it had no effects on the Na+,K+-ATPase activity in rat kidney in which KCC3b is predominantly expressed. In these tissue samples, KCC3a co-immunoprecipitated with α1NaK, while KCC3b did not. Our results suggest that the NH2-terminus of KCC3a is a key region for association with α1NaK, and that KCC3a but not KCC3b can regulate the Na+,K+-ATPase activity.  相似文献   

19.
Endotoxins (lipopolysaccharides; LPS) are known to cause multiple organ failure, including renal dysfunction. LPS triggers the synthesis and release of cytokines and the vasodilatör nitric oxide (NO). A major contributor to the increase in NO production is LPS-stimulated expression of inducible nitric oxide synthase (iNOS). This occurs in vasculature and most organs including the kidney. During endotoxemia, NO and superoxide react spontaneously to form the potent and versatile oxidant peroxynitrite (ONOO) and the formation of 3-nitrotyrosine (nTyr)-protein adducts is a reliable biomarker of ONOO generation. Therefore, the present study was aimed at investigating the role of endogenous nitric oxide in regulating Na+,K+-ATPase activity in the kidney, and at investigating the possible contribution of reactive nitrogen species (RNS) by measuring of iNOS activity. In addition, the present study was aimed at investigating the relationship between nTyr formation with iNOS and Na+,K+-ATPase activities. Previously in our study, nTyr was not detectable in kidney of normal control animals but was detected markedly in LPS exposed animals. In this study, kidney Na+,K+-ATPase activity were maximally inhibited 6 h after LPS injection (P:0.000) and LPS treatment significantly increased iNOS activity of kidney (P:0.000). The regression analysis revealed a very close correlation between Na+,K+-ATPase activity and nTyr levels of LPS treated animals (r = –0.868, P = 0.001). Na+,K+-ATPase activity were also negatively correlated with iNOS activity (r = –0.877, P = 0.001) in inflamed kidney. These data suggest that NO and ONOO contribute to the development of oxidant injury. Furthermore, the source of NO may be iNOS. iNOS are expressed by the kidney, and their activity may increase following LPS administration. In addition, NO and ONOO formation inhibited Na+,K+-ATPase activity. This results also have strongly suggested that bacterial LPS disturbs activity of membrane Na+,K+-ATPase that may be an important component leading to the pathological consequences such as renal dysfunction in which the production of RNS are increased as in the case of LPS challenge. (Mol Cell Biochem 271: 107–112, 2005)  相似文献   

20.
Goat antisera against (Na+ + K+)-ATPase and its isolated subunits and against (K+ + H+)-ATPase have been prepared in order to test for immune cross-reactivity between the two enzymes, whose catalytic subunits show great chemical similarity. None of the (Na+ + K+)-ATPase antisera cross-reacted with (K+ + H+)-ATPase or inhibited its enzyme activity. The same was true for the (K+ + H+)-ATPase antiserum with regard to (Na+ + K+)-ATPase and its subunits and its enzyme activity. So not withstanding the chemical similarity of their subunits, there is no immunological cross-reactivity between these two plasma membrane ATPases.Number LIII in the series Studies on (Na+ + K+)-Activated ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号