首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Longleaf pine (Pinus palustris) historically was a widespread ecosystem composed of a simple tree canopy and grasslands ground layer. After widespread loss of this ecosystem due to logging and fire exclusion, little quantitative information exists about historical structure for restoration goals. We identified composition in De Soto National Forest and Pearl River County, Mississippi, USA, and density, basal area, and percent stocking in Pearl River County using General Land Office surveys and US Forest Service Forest Inventory and Analysis surveys. Historical longleaf ecosystems were about 85% pine, with lesser amounts of broadleaf evergreen and oak species. Densities were about 175 to 180 trees/ha, mean tree diameters were 45 cm, and stocking was around 60% to 65%, which suggested longleaf pines were closed woodlands. Current forests are 38% to 57% pine, primarily loblolly, while longleaf pine is 2% to 8% of composition. Indeed, current longleaf pine composition across the Coastal Plain averages 3% and does not reach 10% at smaller landscape scales. Fire-sensitive broadleaf species of water oak, sweetgum, yellow-poplar, and red maple increased from about 0.5% composition to 2% to 10% of composition. Forests became twice as dense, at about 280 trees/ha to 330 trees/ha, with mean tree diameters of 22 cm. These results characterize conversion from open old growth longleaf forests, resulting in part from human maintenance, to successional forests due to human disruption of the historical ecosystem. It is important to remember structure and composition of historical forests for restoration and recognize wholesale changes so that successional forests do not become the new social and cultural baseline.  相似文献   

2.
Six‐lined racerunner (Aspidoscelis sexlineata) is an indicator species of frequently burned Longleaf pine (Pinus palustris) forests. To evaluate how the species responded to forest restoration, we conducted a mark‐recapture study in formerly fire‐suppressed Longleaf pine forests exposed to prescribed fire or fire surrogates (i.e. mechanical or herbicide‐facilitated hardwood removal) as well as in fire‐suppressed control sites and reference sites, which represented the historic condition. After initial treatment, all sites were exposed to over a decade of prescribed burning with an average return interval of approximately 2 years. We used population‐level response of A. sexlineata as an indicator of the effectiveness of the different treatments in restoring habitat. Specifically, we compared mean numbers of marked adults and juveniles at treatment sites to that of reference sites. After 4 years, restoration objectives were met at sites treated with burning alone and at sites treated with mechanical removal of hardwoods followed by fire. After over 10 years of prescribed burning, restoration objectives were met at all treatments. We conclude that prescribed burning alone was sufficient to restore fire‐suppressed Longleaf pine sandhills for A. sexlineata populations.  相似文献   

3.
Aim We developed an ecosystem classification within a 110,000‐ha Arizona Pinus ponderosa P. & C. Lawson (ponderosa pine) landscape to support ecological restoration of these forests. Specific objectives included identifying key environmental variables constraining ecosystem distribution and comparing plant species composition, richness and tree growth among ecosystems. Location The Coconino National Forest and the Northern Arizona University Centennial Forest, in northern Arizona, USA. Methods We sampled geomorphology, soils and vegetation on 66 0.05‐ha plots in open stands containing trees of pre‐settlement (c. 1875) origin, and on 26 plots in dense post‐settlement stands. Using cluster analysis and ordination of vegetation and environment matrices, we classified plots into ecosystem types internally similar in environmental and vegetational characteristics. Results We identified 10 ecosystem types, ranging from dry, black cinders/Phacelia ecosystems to moist aspen/Lathyrus ecosystems. Texture, organic carbon and other soil properties reflecting the effects of parent materials structured ecosystem distribution across the landscape, and geomorphology was locally important. Plant species composition was ecosystem‐specific, with C3Festuca arizonica Vasey (Arizona fescue), for instance, abundant in mesic basalt/Festuca ecosystems. Mean P. ponderosa diameter increments ranged from 2.3–4.3 mm year?1 across ecosystems in stands of pre‐settlement origin, and the ecosystem classification was robust in dense post‐settlement stands. Main conclusions Several lines of evidence suggest that although species composition may have been altered since settlement, the same basic ecosystems occurred on this landscape in pre‐settlement forests, providing reference information for ecological restoration. Red cinders/Bahia ecosystems were rare historically and > 30% of their area has been burned by crown fires since 1950, indicating that priority could be given to restoring this ecosystem's remaining mapping units. Ecosystem classifications may be useful as data layers in gap analyses to identify restoration and conservation priorities. Ecosystem turnover occurs at broad extents on this landscape, and restoration must accordingly operate across large areas to encompass ecosystem diversity. By incorporating factors driving ecosystem composition, this ecosystem classification represents a framework for estimating spatial variation in ecological properties, such as species diversity, relevant to ecological restoration.  相似文献   

4.
Restoration practices incorporating timber harvest (e.g. to remove undesirable species or reduce tree densities) may generate unmerchantable wood debris that is piled and burned for fuel reduction. Slash pile burns are common in longleaf pine ecosystem restoration that involves hardwood removal before reintroduction of frequent prescribed fire. In this context, long‐lasting effects of slash pile burns may complicate restoration outcomes due to unintended alterations to vegetation, soils, and the soil seed bank. In this study, our objectives were to (1) examine alterations to the soil seed bank, soil physical and chemical characteristics, and initial vegetation recolonization following burn and (2) determine the rate of return of soil and vegetation characteristics to pre‐burn conditions. We found that burning of slash piles (composed of scores of whole trees) results in elevated nutrient levels and significant impacts on vegetation and the soil seed bank, which remain evident for at least 6 years following burn. In this ecosystem, formerly weakly acidic soils become neutral to basic and levels of P remain significantly higher. Following an initial decrease after burn, total soil N increases with time since burn. These changes suggest that not only does pile burning create a fire scar initially devoid of biota, but it also produces an altered soil chemical environment, with possible consequences for long‐term ecosystem restoration efforts in landscapes including numerous fire scars. To facilitate restoration trajectories, further adaptive management to incorporate native plant propagules or suppress encroaching hardwoods within fire scars may be warranted in fire‐dependent ecosystems.  相似文献   

5.
The Boundary Waters Canoe Area (BWCA) Wilderness of northern Minnesota, USA, ememplifies how fire management and natural disturbance determine forest composition and landscape structure at a broad scale. Historically, the BWCA (>400,000 ha) was subject to crown fires with a mean rotation period of 50–100 y. Fires often overlapped, creating a mosaic of differently aged stands with many stands burning frequently or, alternatively, escaping fire for several centuries. The BWCA may never have reached a steady-state (defined as a stable landscape age-class structure). In the early 1900s, a diminished fire regime began creating a more demographically diverse forest, characterized by increasingly uneven-aged stands. Shade-tolerant species typical of the region began replacing the shade-intolerant species that composed the fire-generated even-aged stands. Red pine (Pinus resinosa) stands are relatively uncommon in the BWCA today and are of special concern. The replacement of early-to-midsuccessional species is occurring at the scale of individual gaps, producing mixed-species multiaged forests. We used LANDIS, a spatially explicit forest landscape model, to investigate the long-term consequences of fire reintroduction or continuing fire absence on forest composition and landscape structure. Fire reintroduction was evaluated at three potential mean fire rotation periods (FRP): 50,100, and 300 y. Our model scenarios predict that if fire reintroduction mimics the natural fire regime (bracketed by FRP = 50 and 100 y), it will be most successful at preserving the original species composition and landscape structure, although jack pine (Pinus banksiana) may require special management. With limited fire reintroduction, all of the extant species are retained although species dominance and landscape structure will be substantially altered. If fire remains absent, many fire-dependent species will be lost as local dominants, including red pine. The landscape appears to be in a state of rapid change and a shift in management to promote fire may need to be implemented soon to prevent further deviation from historic, presettlement conditions.  相似文献   

6.
The concept that vegetation structure (and faunal habitat) develops predictably with time since fire has been central to understanding the relationship between fire and fauna. However, because plants regenerate after fire in different ways (e.g. resprouting from above‐ground stems vs. underground lignotubers), use of simple categories based on time since fire might not adequately represent post‐fire habitat development in all ecosystems. We tested the hypothesis that the post‐fire development of faunal habitat structure differs between ecosystems, depending on fire regeneration traits of the dominant canopy trees. We measured 12 habitat components at sites in foothill forests (n = 38), heathy woodlands (n = 38) and mallee woodlands (n = 98) in Victoria, Australia, and used generalised additive models to predict changes in each variable with time since fire. A greater percentage of faunal habitat variables responded significantly to time since fire in mallee woodlands, where fires typically are stand‐replacing, than in foothill forests and heathy woodlands, where canopy tree stems generally persist through fire. In the ecosystem with the highest proportion of epicormic resprouters (foothill forests), only ground cover and understorey vegetation responded significantly to time since fire, compared with all but one variable in the ecosystem dominated by basal resprouters (mallee woodlands). These differences between ecosystems in the post‐fire development of key habitat components suggest there may also be fundamental differences in the role of fire in shaping the distribution of fauna. If so, this challenges the way in which many fire‐prone ecosystems currently are categorised and managed, especially the level of dependence on time since fire and other temporal surrogates such as age‐classes and successional states. Where time since fire is a poor surrogate for habitat structural development, additional complexity (e.g. fire severity, topography and prior land‐use history) could better capture processes that determine faunal occurrence in fire‐prone ecosystems.  相似文献   

7.
We used LANDIS, a model of forest disturbance and succession, to simulate successional dynamics of forests in the southern Appalachian Mountains. The simulated environments are based on the Great Smoky Mountains landscapes studied by Whittaker. We focused on the consequences of two contrasting disturbance regimes—fire exclusion versus frequent burning—for the Yellow pine (Pinus L., subgenus Diploxylon Koehne) and oak (Quercus L.) forests that occupy dry mountain slopes and ridgetops. These ecosystems are a conservation priority, and declines in their abundance have stimulated considerable interest in the use of fire for ecosystem restoration. Under fire exclusion, the abundance of Yellow pines is projected to decrease, even on the driest sites (ridgetops, south‐ and west‐facing slopes). Hardwoods and White pine (P. strobus L.) replace the Yellow pines. In contrast, frequent burning promotes high levels of Table Mountain pine (P. pungens Lamb.) and Pitch pine (P. rigida Mill.) on the driest sites and reduces the abundance of less fire‐tolerant species. Our simulations also imply that fire maintains open woodland conditions, rather than closed‐canopy forest. For oaks, fire exclusion is beneficial on the driest sites because it permits oaks to replace the pines. On moister sites (north‐ and east‐facing slopes), however, fire exclusion leads to a diverse mix of oaks and other species, whereas frequent burning favors Chestnut oak (Q. montana Willd.) and White oak (Q. alba L.) dominance. Our results suggest that reintroducing fire may help restore decadent pine and oak stands in the southern Appalachian Mountains.  相似文献   

8.
Question: Can current understory vegetation composition across an elevation gradient of Pinus ponderosa‐dominated forests be used to identify areas that, prior to 20th century fire suppression, were characterized by different fire frequencies and severities (i.e., historic fire regimes)? Location: P. ponderosa‐dominated forests in the montane zone of the northern Colorado Front Range, Boulder and Larimer Counties, Colorado, USA. Methods: Understory species composition and stand characteristics were sampled at 43 sites with previously determined fire histories. Indicator species analyses and indirect ordination were used to determine: (1) if stands within a particular historic fire regime had similar understory compositions, and (2) if understory vegetation was associated with the same environmental gradients that influence fire regime. Classification and regression tree analysis was used to ascertain which species could predict fire regimes. Results: Indicator species analysis identified 34 understory species as significant indicators of three distinct historic fire regimes along an elevation gradient from low‐ to high‐elevation P. ponderosa forests. A predictive model derived from a classification tree identified five species as reliable predictors of fire regime. Conclusions: P. ponderosa‐dominated forests shaped by three distinct historic fire regimes have significantly different floristic composition, and current understory compositions can be used as reliable indicators of historical differences in past fire frequency and severity. The feasibility demonstrated in the current study using current understory vegetation properties to detect different historic fire regimes, should be examined in other fire‐prone forest ecosystems.  相似文献   

9.
Longleaf pine savannas are highly threatened, fire‐maintained ecosystems unique to the southeastern United States. Fire suppression and conversion to agriculture have strongly affected this ecosystem, altering overstory canopies, understory plant communities, and animal populations. Tree thinning to reinstate open canopies can benefit understory plant diversity, but effects on animal communities are less well understood. Moreover, agricultural land‐use legacies can have long‐lasting impacts on plant communities, but their effects on animal communities either alone or through interactions with restoration are unclear. Resolving these impacts is important due to the conservation potential of fire‐suppressed and post‐agricultural longleaf savannas. We evaluated how historical agricultural land use and canopy thinning affect the diversity and abundance of wild bees in longleaf pine savannas. We employed a replicated, large‐scale factorial block experiment in South Carolina, where canopy thinning was applied to longleaf pine savannas that were either post‐agricultural or remnant (no agricultural history). Bees were sampled using elevated bee bowls. In the second growing season after restoration, thinned plots supported a greater bee abundance and bee community richness. Additionally, restored plots had altered wild bee community composition when compared to unthinned plots, indicating that reduction of canopy cover by the thinning treatment best predicted wild bee diversity and composition. Conversely, we found little evidence for differences between sites with or without historical agricultural land use. Some abundant Lasioglossum species were the most sensitive to habitat changes. Our results highlight how restoration practices that reduce canopy cover in fire‐suppressed savannas can have rapid benefits for wild bee communities.  相似文献   

10.
Question: What are the effects of fire in native shrubland communities and in pine plantations established in these shrublands? Location: Northern Patagonia, Argentina. Methods: We surveyed four sites in Chall‐Huaco valley, located in northwest Patagonia. Each site was a vegetation mosaic composed of an unburned Pinus ponderosa plantation, a plantation burned in 1996, and an unburned matorral and a matorral burned by the same fire. We recorded the cover of all vascular plant species. We also analysed species richness, total cover, proportion of exotic species, abundance of woody species and herb species, cover of exotic species, abundance of woody and herb species and differences in composition of species. For both shrubs and tree species we recorded the main strategy of regeneration (by resprouting or by seed). Results: We found that fire had different effects on native matorral and pine plantations. Five years after fire, plantations came to be dominated by herbs and exotic species, showing differences in floristic composition. In contrast, matorral communities remained very similar to unburned matorral in terms of species richness, proportion of woody species, and herb species and proportion of exotics. Also, pine plantations were primarily colonized by seedlings, while matorrals were primarily colonized by resprouting. Conclusions: Matorrals are highly fire resilient communities, and the practice of establishing plantations on matorrals produces a strong reduction in the capacity of matorral to return to its original state. The elimination of shrubs owing to the effect of plantations can hinder regeneration of native ecosystems. Burned plantations may slowly develop into ecosystems similar to the native ones, or they may produce a new ecosystem dominated by exotic herbs. This study shows that plantations of exotic conifers affect native vegetation even after they have been removed, as in this case by fire.  相似文献   

11.
Open habitats dominated by herbaceous plants on thin, rocky soils occur within the forests of eastern North America. Although these habitats vary in origin, structure, geology, and species composition, all contribute greatly to regional biodiversity by harboring endemic and/or rare plants. Little is known about how disturbances affect plant populations in these ecosystems. Fire once was a frequent natural disturbance in the Ketona dolomite glades of Alabama, an ecosystem harboring eight endemic taxa and numerous other species of conservation concern. We designed an experiment to determine how the reintroduction of fire into the glades and surrounding longleaf pine forests affects populations of rare glade plant species. Experimental and control plots were established within the glades. Experimental plots were burned in April 2004, and all plots were surveyed during two subsequent growing seasons (2004 and 2005). Populations of three of 14 species of conservation concern declined significantly after the initial fire but recovered the next year. Among other herbaceous species, only five and two differed in population size in 2004 and 2005, respectively. In 2004, more species were more abundant in control than burned plots, but this difference was not detected in 2005. Multivariate community‐level analyses of species presence–absence suggested that the effects of fire were negligible by the 2005 survey. Populations of young trees that had invaded the glades declined dramatically as a result of treatment fires. These results suggest that the reintroduction of fire will not harm glade species and may help prevent encroachment of the surrounding forest.  相似文献   

12.
Modeling Ecological Restoration Effects on Ponderosa Pine Forest Structure   总被引:3,自引:0,他引:3  
FIRESUM, an ecological process model incorporating surface fire disturbance, was modified for use in southwestern ponderosa pine ecosystems. The model was used to determine changes in forest structure over time and then applied to simulate changes in aboveground biomass and nitrogen storage since exclusion of the natural frequent fire regime in an unharvested Arizona forest. Dendroecological reconstruction of forest structure in 1876, prior to Euro‐American settlement, was used to initialize the model; projections were validated with forest measurements in 1992. Biomass allocations shifted from herbaceous plants to trees, and nitrogen was increasingly retained in living and dead tree biomass over the 116‐year period (1876–1992). Forest conditions in 1992 were substantially degraded compared to reference presettlement conditions: old‐growth trees were dying at accelerated rates, herbaceous production was reduced nearly 90%, and the entire stand was highly susceptible to high‐intensity wildfire. Following an experiment initiated in 1993 to test ecological restoration treatments, future changes were modeled for the next century. Future forest structure remained within the natural presettlement range of variability under the full restoration treatment, in which forest biomass structure was thinned to emulate presettlement conditions and repeated low‐intensity fire was reintroduced. Simulation of the control treatment indicated continuation of exceptionally high tree density, probably culminating in stand‐replacing ecosystem change through high‐intensity wildfire or tree mortality from pathogens. Intermediate results were observed in the partial restoration treatment (tree thinning only); the open forest structure and high herbaceous productivity found immediately after treatment were gradually degraded as dense tree cover reestablished in the absence of fire. Modeling results support comprehensive restorative management as a long‐term approach to conservation of key indigenous ecosystem characteristics.  相似文献   

13.
Fire is a keystone ecological process in many ecosystems. In such ecosystems, the exclusion of fire can lead to fundamental shifts in vegetation structure, composition and distribution and poses a major threat to the biodiversity dependent on these habitats. Programmes to manage and restore native vegetation have increased rapidly over recent decades, and while many such programmes have demonstrable success managing a range of environmental threats, their effectiveness in identifying and addressing the major threat of fire exclusion in fire‐dependent vegetation is questionable. This study sought to identify impediments to the management of fire‐excluded vegetation at the assessment and planning stage of ecological management programmes in Byron Shire in north‐east New South Wales. Sixty ecological management and restoration plans for sites known to be fire‐excluded in the shire were reviewed to determine the rate at which fire exclusion was identified and addressed in planning over the last decade. Document analysis found the majority of plans failed to accurately identify fire exclusion or to recommend the reintroduction of fire in fire‐excluded management sites. Absence of standardised guidelines that require comprehensive consideration of fire exclusion in ecological management and restoration plans is suggested as a key factor in the low response rates observed. Furthermore, it was found that existing implicit prompts to address inappropriate‐fire regimes generally, including government policies, project objectives and site‐assessment prompts had little effect on identification and response rates, further confirming the need for more‐explicit assessment prompts relating to fire‐frequency issues. Without improvements of the current ecological assessment and planning process to increase identification and management of fire exclusion in the study area, fire‐dependent biodiversity values will continue to decline wherever fire exclusion remains unmanaged. It is recommended that explicit assessment and planning templates are developed and implemented to effectively manage fire exclusion and conserve the fire‐dependent biodiversity of Byron Shire and the far north coast of NSW.  相似文献   

14.
Fire‐maintained Pinus palustris (longleaf pine) ecosystems are species rich and considered a top conservation priority in the southeastern United States. Ground‐nesting species such as Gopherus polyphemus (gopher tortoise) and Colinus virginianus (northern bobwhite) thrive in longleaf ecosystems. However, the generalist carnivore Procyon lotor (raccoon) is a significant predator of these endemic ground nesters. In forested ecosystems, raccoons prefer hardwood‐dominated habitats. Removal of hardwood trees, which is a common longleaf pine ecosystem restoration tool, affects habitat use of this predator. We examined 269 daytime resting sites (DRS) associated with 31 radio‐collared adult raccoons (18 M, 13 F) during 2014–2015 on a longleaf pine‐dominated site in southwestern Georgia. We developed 26 a priori models using an information theoretic approach to evaluate factors affecting use of DRS by raccoons. The top two models (ΔAIC < 2) had combined model weights of 0.75 and contained tree diameter, tree type, presence of nearby hardwood, and distances to pine, hardwood, mixed forest, and agriculture as predictors. However, the only informative variables were tree type and tree diameter. Raccoons used DRS in all available forest types, but were less likely to use pine trees (n = 7) relative to hardwoods (n = 247), and there was a positive relationship with tree diameter. Females used smaller trees farther from agriculture and primary roads, and were closer to wetlands than those used by males. Hardwood removal from within longleaf pine ecosystem affects habitat use of this predator, specifically DRS.  相似文献   

15.
Abstract Logging, fire suppression, and urbanization have all contributed to the serious decline and fragmentation of Pinus palustris (longleaf pine) ecosystems in the southeastern United States. Effective management of the remaining patches of these pyrogenic communities must incorporate periodic low‐intensity fires, even where they are located on private lands in populated urban and suburban areas. To explore the effects of fire and its potential use for restoration and management of small fragments surrounded by suburban development, we conducted growing season prescribed fires in remnant longleaf pine sandhill patches in the suburbs of Gainesville, Florida. Density and composition of hardwoods were surveyed pre‐burn and 1 and 9 months post‐burn. Woody stem density decreased in the burn plots, predominantly in the smaller size classes. Flowering responses of forbs and small shrubs were surveyed six times post‐burn for 1 year. Overall, the burns did not yield greater densities of flowering stems, but burn patches had higher species richness and diversity than control patches. In addition, there were consistently greater numbers of “showy flowered” sandhill species in flower in burn patches relative to controls. The results of this research demonstrate that prescribed fire can be used for restoration and management of small remnants of longleaf pine sandhill in suburban neighborhoods. It is also clear that although a single prescribed burn can be effective, it will take more than one burn to attain desired restoration goals in degraded longleaf remnants.  相似文献   

16.
Questions: How does woody vegetation abundance and diversity differ after natural disturbances causing different levels of mortality? Location: Abies balsamea–Betula papyrifera boreal mixed‐wood stands of southeast Quebec, Canada. Methods: Woody vegetation abundance and diversity were quantified and compared among three disturbance‐caused mortality classes, canopy gap, moderate‐severity disturbances, and catastrophic fire, using redundancy analysis, a constrained linear ordination technique, and diversity indices. Results: Substantial changes in canopy tree species abundance and diversity only occurred after catastrophic fire. Shade‐tolerant, late‐successional conifer species remained dominant after canopy gap and moderate‐severity disturbances, whereas shade‐intolerant, early‐successional colonizers dominated canopy tree regeneration after catastrophic fire. Density and diversity of mid‐tolerant and shade‐intolerant understory tree and shrub species increased as the impact of disturbance increased. Highest species richness estimates were observed after catastrophic fire, with several species establishing exclusively under these conditions. Relative abundance of canopy tree regeneration was most similar after canopy gap and moderate‐severity disturbances. For the sub‐canopy tree and shrub community, relative species abundances were most similar after moderate‐severity disturbances and catastrophic fire. Vegetation responses to moderate‐severity disturbances thus had commonalities with both extremes of the disturbance‐caused mortality gradient, but for different regeneration layers. Conclusions: Current spatio‐temporal parameters of natural disturbances causing varying degrees of mortality promote the development of a complex, multi‐cohort forest condition throughout the landscape. The projected increase in time intervals between catastrophic fires may lead to reduced diversity within the system.  相似文献   

17.
Question: Do case studies from silvicultural and restoration studies and applied conservation management in second‐growth Pinus palustris stands provide unique insights for conservation models? Methods: A review of management paradigms that conserve the high biological diversity and rare species, drawn from characteristics in both second‐growth and old‐growth stands, is presented for fire‐maintained Pinus palustris (longleaf pine) forests. Results: A common assumption that old‐growth stands provide the primary information for the development of conservation management strategies de‐emphasizes lessons learned from second‐growth and restoration studies. Primary conservation management goals for the Pinus palustris ecosystem include the perpetual regeneration of the fire‐maintained forest and conservation of the characteristically high biological diversity and rare species. Several attributes, such as a sustained population of Picoides borealis (red‐cockaded woodpecker), Aristida stricta (wiregrass)‐dominated ground cover, and undisturbed upland‐wetland ecotones, can predict a diverse and ecologically functional ecosystem. Such indicators are linked to critical structural and functional features of the system and reflect previous land management histories that suggest sustainable approaches. Conclusions: A traditional definition of ‘old‐growth’ relying on overstorey may be limited in describing important features of healthy, diverse Pinus palustris ecosystems. Some characteristics are significantly more important for maintenance of diversity than age of the trees and these features may be present in old‐ or second‐growth forests. We advocate that the management history, structural characteristics and landscape context of stands that harbour desirable conservation attributes (red‐cockaded woodpeckers, wiregrass, gopher tortoises and undisturbed upland‐wetland ecotones) can be used as indicators to identify important conservation and forest management principles.  相似文献   

18.
Despite growing recognition of the conservation values of grassy biomes, our understanding of how to maintain and restore biodiverse tropical grasslands (including savannas and open‐canopy grassy woodlands) remains limited. To incorporate grasslands into large‐scale restoration efforts, we synthesised existing ecological knowledge of tropical grassland resilience and approaches to plant community restoration. Tropical grassland plant communities are resilient to, and often dependent on, the endogenous disturbances with which they evolved – frequent fires and native megafaunal herbivory. In stark contrast, tropical grasslands are extremely vulnerable to human‐caused exogenous disturbances, particularly those that alter soils and destroy belowground biomass (e.g. tillage agriculture, surface mining); tropical grassland restoration after severe soil disturbances is expensive and rarely achieves management targets. Where grasslands have been degraded by altered disturbance regimes (e.g. fire exclusion), exotic plant invasions, or afforestation, restoration efforts can recreate vegetation structure (i.e. historical tree density and herbaceous ground cover), but species‐diverse plant communities, including endemic species, are slow to recover. Complicating plant‐community restoration efforts, many tropical grassland species, particularly those that invest in underground storage organs, are difficult to propagate and re‐establish. To guide restoration decisions, we draw on the old‐growth grassland concept, the novel ecosystem concept, and theory regarding tree cover along resource gradients in savannas to propose a conceptual framework that classifies tropical grasslands into three broad ecosystem states. These states are: (1) old‐growth grasslands (i.e. ancient, biodiverse grassy ecosystems), where management should focus on the maintenance of disturbance regimes; (2) hybrid grasslands, where restoration should emphasise a return towards the old‐growth state; and (3) novel ecosystems, where the magnitude of environmental change (i.e. a shift to an alternative ecosystem state) or the socioecological context preclude a return to historical conditions.  相似文献   

19.
1 Natural and recurring disturbances caused by fire, native forest insects and pathogens have interacted for millennia to create and maintain forests dominated by seral or pioneering species of conifers in the interior regions of the western United States and Canada. 2 Changes in fire suppression and other factors in the last century have altered the species composition and increased the density of trees in many western forests, leading to concomitant changes in how these three disturbance agents interact. 3 Two‐ and three‐way interactions are reviewed that involve fire, insects and pathogens in these forests, including fire‐induced pathogen infection and insect attack, the effects of tree mortality from insects and diseases on fuel accumulation, and efforts to model these interactions. 4 The emerging concern is highlighted regarding how the amount and distribution of bark beetle‐caused tree mortality will be affected by large‐scale restoration of these fire‐adapted forest ecosystems via prescribed fire. 5 The effects of fire on soil insects and pathogens, and on biodiversity of ground‐dwelling arthropods, are examined. 6 The effects of fire suppression on forest susceptibility to insects and pathogens, are discussed, as is the use of prescribed fire to control forest pests.  相似文献   

20.
Seed Bank Viability in Disturbed Longleaf Pine Sites   总被引:4,自引:0,他引:4  
Some of the most species‐rich areas and highest concentrations of threatened and endangered species in the southeastern United States are found in wet savanna and flatwood longleaf pine (Pinus palustris Mill.) communities. Where intensive forestry practices have eliminated much of the natural understory of the longleaf ecosystem, the potential for reestablishment through a seed bank may present a valuable restoration opportunity. Longleaf pine sites converted to loblolly pine plantations and non‐disturbed longleaf sites on the Coastal Plain of North Carolina were examined for seed bank presence and diversity. Conducting vegetation surveys and examining the seed bank using the seedling emergence technique allowed for verification of the seed bank presence, as well as evaluation of the quality of the seed bank on disturbed longleaf pine sites. Forty‐three species and over 1,000 individuals germinated, and the seed banks of both the disturbed and non‐disturbed stand types contained species not noted in the vegetation survey. Although many of these species were considered weedy and typical of disturbance, numerous taxa were indicative of stable longleaf pine communities. This study confirms both the presence and quality of seed banks in highly disturbed former longleaf pine sites, suggesting that the seed bank may be an important tool in restoration efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号