首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat fragmentation inhibits gene flow between populations often resulting in a loss of genetic diversity with possible negative effects on fitness parameters. In vertebrates, growing evidence suggests that such genetic diversity is particularly important at the level of the major histocompatibility complex (MHC) because its gene products play an important role in immune functions. Diversity in the MHC is assumed to improve population viability. Here, we investigated the impact of forest fragmentation on the genetic variability of one of the functionally important parts of the MHC, DRB exon 2, of the endemic mouse lemur Microcebus murinus by comparing populations inhabiting two littoral forest fragments of different size in southeastern Madagascar. Twelve different alleles of DRB exon 2 were found in 145 individuals of M. murinus with high levels of sequence divergence between alleles. In both subpopulations, levels of genetic diversity were high, and the genetic analyses revealed only limited effects of fragmentation. Significantly more non-synonymous than synonymous substitutions were found in the functionally important antigen recognition and binding sites indicating selection processes maintaining MHC polymorphism. This is the first study on MHC variation in a free-ranging Malagasy lemur population.  相似文献   

2.
MHC genes play a crucial role in pathogen recognition and are the most polymorphic genes in vertebrates. Loss of variation in these genes in bottlenecked species is thought to put their survival at risk. We examined variation at the MHC II DRB3 locus in the European bison, Bison bonasus, a species that has undergone an extreme bottleneck: the current population originated from only 12 founders. We also tested for the association of DRB3 genes with the incidence of posthitis, a disease affecting the reproductive organs of bulls and posing a new threat to the survival of the species. We found very limited MHC diversity, with only four alleles segregating in a sample of 172 individuals from a free‐ranging Białowieża population. The alleles were highly divergent and revealed the hallmark of positive selection acting on them in the past, that is, a significant excess of nonsynonymous substitutions. This excess was concentrated in putative antigen‐binding sites, suggesting that selection was driven by pathogens. However, we did not observe departures from Hardy–Weinberg equilibrium, an indicator of strong ongoing selection. Neither have we found a significant association between DRB3 alleles or genotypes and susceptibility to posthitis. Alleles conferring resistance to males may have been lost during the extreme bottleneck the species had undergone.  相似文献   

3.
Deciphering patterns of genetic variation within a species is essential for understanding population structure, local adaptation and differences in diversity between populations. Whilst neutrally evolving genetic markers can be used to elucidate demographic processes and genetic structure, they are not subject to selection and therefore are not informative about patterns of adaptive variation. As such, assessments of pertinent adaptive loci, such as the immunity genes of the major histocompatibility complex (MHC), are increasingly being incorporated into genetic studies. In this study, we combined neutral (microsatellite, mtDNA) and adaptive (MHC class II DLA‐DRB1 locus) markers to elucidate the factors influencing patterns of genetic variation in the African wild dog (Lycaon pictus); an endangered canid that has suffered extensive declines in distribution and abundance. Our genetic analyses found all extant wild dog populations to be relatively small (Ne < 30). Furthermore, through coalescent modelling, we detected a genetic signature of a recent and substantial demographic decline, which correlates with human expansion, but contrasts with findings in some other African mammals. We found strong structuring of wild dog populations, indicating the negative influence of extensive habitat fragmentation and loss of gene flow between habitat patches. Across populations, we found that the spatial and temporal structure of microsatellite diversity and MHC diversity were correlated and strongly influenced by demographic stability and population size, indicating the effects of genetic drift in these small populations. Despite this correlation, we detected signatures of selection at the MHC, implying that selection has not been completely overwhelmed by genetic drift.  相似文献   

4.
Babik W  Durka W  Radwan J 《Molecular ecology》2005,14(14):4249-4257
Major histocompatibility complex (MHC) genes, coding molecules which play an important role in immune response, are the most polymorphic genes known in vertebrates. However, MHC polymorphism in some species is limited. MHC monomorphism at several MHC class I and II loci was previously reported for two neighbouring northern European populations of the Eurasian beaver (Castor fiber) and reduced selection for polymorphism has been hypothesized. Here, we analysed a partial sequence of the second exon of the MHC II DRB locus from seven relict European and Asian beaver populations. We detected 10 unique alleles among 76 beavers analysed. Only a western Siberian population was polymorphic, with four alleles detected in 10 individuals. Each of the remaining populations was fixed for a different allele. Sequences showed considerable divergence, suggesting the long persistence of allelic lineages. A significant excess of nonsynonymous substitutions was detected at the antigen binding sites, indicating that sequence evolution of beaver DRB was driven by positive selection. Current MHC monomorphism in the majority of populations may be the result of the superimposition of the recent bottleneck on pre-existing genetic structure resulting from population subdivision and differential pathogen pressure.  相似文献   

5.
Endangered species worldwide exist in remnant populations, often within fragmented landscapes. Although assessment of genetic diversity in fragmented habitats is very important for conservation purposes, it is usually impossible to evaluate the amount of diversity that has actually been lost. Here, we compared population structure and levels of genetic diversity within populations of spotted suslik Spermophilus suslicus, inhabiting two different parts of the species range characterized by different levels of habitat connectivity. We used microsatellites to analyze 10 critically endangered populations located at the western part of the range, where suslik habitat have been severely devastated due to agriculture industrialization. Their genetic composition was compared with four populations from the eastern part of the range where the species still occupies habitat with reasonable levels of connectivity. In the western region, we detected extreme population structure (F ST = 0.20) and levels of genetic diversity (Allelic richness ranged from 1.45 to 3.07) characteristic for highly endangered populations. Alternatively, in the eastern region we found significantly higher allelic richness (from 5.09 to 5.81) and insignificant population structure (F ST = 0.03). As we identified a strong correlation between genetic and geographic distance and a lack of private alleles in the western region, we conclude that extreme population structure and lower genetic diversity is due to recent habitat loss. Results from this study provide guidelines for conservation and management of this highly endangered species.  相似文献   

6.
The major histocompatibility complex (MHC) plays an important role in the immune system of vertebrates. We used the second exon of four MHC class II genes (DRA, DQA1, DQA2 and DRB3) to assess the overall MHC variation in forest musk deer (Moschus berezovskii). We also compared the MHC variation in captive and wild populations. We observed 22 alleles at four loci (four at DRA, four at DQA1, four at DQA2 and 10 at DRB3), 15 of which were newly identified alleles. Results suggest that forest musk deer maintain relatively high MHC variation, which may result from balancing selection. Moreover, considerable diversity was observed at the DRA locus. We found a high frequency of Mobe‐DRA*02, Mobe‐DQA1*01 and Mobe‐DQA2*05 alleles, which may be important for pathogen resistance. A Ewens–Watterson test showed that the DRB3 locus in the wild population had experienced recent balancing selection. We detected a small divergence at the DRA locus, suggesting the effect of weak positive selection on the DRA gene. Alternatively, this locus may be young and not yet adapted a wide spectrum of alleles for pathogen resistance. The significant heterozygosity deficit observed at the DQA1 and DRB3 loci in the captive population and at all four loci in the wild population may be the result of a population bottleneck. Additionally, MHC genetic diversity was higher in the wild population than in the captive, suggesting that the wild population may have the ability to respond to a wider range of pathogens.  相似文献   

7.
Major histocompatibility complex (MHC) genes are important for vertebrate immune response and typically display high levels of diversity due to balancing selection from exposure to diverse pathogens. An understanding of the structure of the MHC region and diversity among functional MHC genes is critical to understanding the evolution of the MHC and species resilience to disease exposure. In this study, we characterise the structure and diversity of class II MHC genes in little spotted kiwi Apteryx owenii, a ratite bird representing the basal avian lineage (paleognaths). Results indicate that little spotted kiwi have a more complex MHC structure than that of other non-passerine birds, with at least five class II MHC genes, three of which are expressed and likely to be functional. Levels of MHC variation among little spotted kiwi are extremely low, with 13 birds assayed having nearly identical MHC genotypes (only two genotypes containing four alleles, three of which are fixed). These results suggest that recent genetic drift due to a species-wide bottleneck of at most seven birds has overwhelmed past selection for high MHC diversity in little spotted kiwi, potentially leaving the species highly susceptible to disease.  相似文献   

8.
Genetic variation at the major histocompatibility complex (MHC) is vitally important for wildlife populations to respond to pathogen threats. As natural populations can fluctuate greatly in size, a key issue concerns how population cycles and bottlenecks that could reduce genetic diversity will influence MHC genes. Using 454 sequencing, we characterized genetic diversity at the DRB Class II locus in montane voles (Microtus montanus), a North American rodent that regularly undergoes high‐amplitude fluctuations in population size. We tested for evidence of historic balancing selection, recombination, and gene duplication to identify mechanisms maintaining allelic diversity. Counter to our expectations, we found strong evidence of purifying selection acting on the DRB locus in montane voles. We speculate that the interplay between population fluctuations and gene duplication might be responsible for the weak evidence of historic balancing selection and strong evidence of purifying selection detected. To further explore this idea, we conducted a phylogenetically controlled comparative analysis across 16 rodent species with varying demographic histories and MHC duplication events (based on the maximum number of alleles detected per individual). On the basis of phylogenetic generalized linear model‐averaging, we found evidence that the estimated number of duplicated loci was positively related to allelic diversity and, surprisingly, to the strength of purifying selection at the DRB locus. Our analyses also revealed that species that had undergone population bottlenecks had lower allelic richness than stable species. This study highlights the need to consider demographic history and genetic structure alongside patterns of natural selection to understand resulting patterns of genetic variation at the MHC.  相似文献   

9.
Neutral genetic markers are commonly used to understand the effects of fragmentation and population bottlenecks on genetic variation in threatened species. Although neutral markers are useful for inferring population history, the analysis of functional genes is required to determine the significance of any observed geographical differences in variation. The genes of the major histocompatibility complex (MHC) are well‐known examples of genes of adaptive significance and are particularly relevant to conservation because of their role in pathogen resistance. In this study, we survey diversity at MHC class I loci across a range of tuatara populations. We compare the levels of MHC variation with that observed at neutral microsatellite markers to determine the relative roles of balancing selection, diversifying selection and genetic drift in shaping patterns of MHC variation in isolated populations. In general, levels of MHC variation within tuatara populations are concordant with microsatellite variation. Tuatara populations are highly differentiated at MHC genes, particularly between the northern and Cook Strait regions, and a trend towards diversifying selection across populations was observed. However, overall our results indicate that population bottlenecks and isolation have a larger influence on patterns of MHC variation in tuatara populations than selection.  相似文献   

10.
The major histocompatibility complex (MHC) is an immunological gene-dense region of high diversity in mammalian species. Sus scrofa was domesticated by at least six independent events over Eurasia during the Holocene period. It has been hypothesized that the level and distribution of MHC variation in pig populations reflect genetic selection and environmental influences. In an effort to define the complexity of MHC polymorphisms and the role of selection in the generation of class II gene diversity (DQB, DRB1, and pseudogene ΨDRB3), DNA from globally distributed unrelated domestic pigs of European and Asian origins and a Suidae out-group was analyzed. The number of pseudogene alleles identified (ΨDRB3 33) was greater than those found in the expressed genes (DQB 20 and DRB1 23) but the level of observed heterozygosity (ΨDRB3 0.452, DQB 0.732, and DRB1 0.767) and sequence diversity (ΨDRB3 0.029, DQB 0.062, and DRB1 0.074) were significantly lower in the pseudogene, respectively. The substitution ratios reflected an excess of d N (DQB 1.476, DRB1 1.724, and ΨDRB3 0.508) and the persistence of expressed gene alleles suggesting the influence of balancing selection, while the pseudogene was undergoing purifying selection. The lack of a clear MHC phylogeographic tree, coupled with close genetic distances observed between the European and Asian populations (DQB 0.047 and DRB1 0.063) suggested that unlike observations using mtDNA, the MHC diversity lacks phylogeographic structure and appears to be globally uniform. Taken together, these results suggest that, despite regional differences in selective breeding and environments, no skewing of MHC diversity has occurred. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Habitat fragmentation may influence the genetic make-up and adaptability of endangered populations. To facilitate genetic monitoring of the endangered European ground squirrel (EGS), we analyzed 382 individuals from 16 populations in Central Europe, covering almost half of its natural range. We tested how fragmentation affects the genetic architecture of presumably selectively neutral (12 microsatellites) and non-neutral (the major histocompatibility class II DRB gene) loci. Spatial genetic analyses defined two groups of populations, “western” and “eastern”, with a significantly higher level of habitat fragmentation in the former group. The highly fragmented western populations had significantly lower genetic diversity in both types of markers. Only one allele of the DRB gene predominated in populations of the western group, while four alleles were evenly distributed across the eastern populations. Coefficient of inbreeding values (F IS) calculated from microsatellites were significantly higher in the western (0.27–0.79) than in eastern populations (−0.060–0.119). Inter-population differentiation was very high, but similar in both groups (western F ST = 0.23, eastern F ST = 0.25). The test of isolation by distance was significant for the whole dataset, as well as for the two groups analyzed separately. Comparison of genetic variability and structure on microsatellites and the DRB gene does not provide any evidence for contemporary selection on MHC genes. We suggest that genetic drift in small bottlenecked and fragmented populations may overact the role of balancing selection. Based on the resulting risk of inbreeding depression in the western populations, we support population management by crossbreeding between the western and eastern populations.  相似文献   

12.
During the last two centuries, the Spanish ibex (Capra pyrenaica) has shown a significant demographic decline as a result of the progressive destruction of its natural habitat, disease epidemics, and uncontrolled hunting. Partial sequencing of the class II MHC DRB1 gene revealed that the Spanish ibex has remarkably low levels of genetic variation at this locus, with only six different DRB1 alleles and an observed heterozygosity of 0.429-0.579. The rates of nonsynonymous vs synonymous substitutions were significantly different in the peptide-binding region (dN/dS=5.347, P=0.002), a feature that indicates that the DRB1 gene is under positive selection. A phylogenetic analysis of the Spanish ibex and a set of domestic goat DRB1 alleles revealed that the reported sequences represent four major allelic lineages. The limited allelic repertoire of the DRB1 gene in the Spanish ibex is likely the direct result of the recent history of population bottlenecks and marked demographic decline of this species. A genetic survey of 13 microsatellite loci was consistent with this idea. The Spanish ibex subspecies C. p. hispanica and C. p. victoriae consistently showed considerably lower levels of microsatellite heterozygosity (Ho=0.184-0.231) and allelic diversity (mean number of alleles per locus=2-2.4) than those reported in other wild ruminants. This study demonstrates the significance of both natural selection and the demographic history of populations in determining patterns of genetic variation at MHC loci. In addition, our results emphasize the importance of locally adapted populations for the preservation of genetic diversity.  相似文献   

13.
Across species, diversity at the major histocompatibility complex (MHC) is critical to individual disease resistance and, hence, to population health; however, MHC diversity can be reduced in small, fragmented, or isolated populations. Given the need for comparative studies of functional genetic diversity, we investigated whether MHC diversity differs between populations which are open, that is experiencing gene flow, versus populations which are closed, that is isolated from other populations. Using the endangered ring‐tailed lemur (Lemur catta) as a model, we compared two populations under long‐term study: a relatively “open,” wild population (n = 180) derived from Bezà Mahafaly Special Reserve, Madagascar (2003–2013) and a “closed,” captive population (n = 121) derived from the Duke Lemur Center (DLC, 1980–2013) and from the Indianapolis and Cincinnati Zoos (2012). For all animals, we assessed MHC‐DRB diversity and, across populations, we compared the number of unique MHC‐DRB alleles and their distributions. Wild individuals possessed more MHC‐DRB alleles than did captive individuals, and overall, the wild population had more unique MHC‐DRB alleles that were more evenly distributed than did the captive population. Despite management efforts to maintain or increase genetic diversity in the DLC population, MHC diversity remained static from 1980 to 2010. Since 2010, however, captive‐breeding efforts resulted in the MHC diversity of offspring increasing to a level commensurate with that found in wild individuals. Therefore, loss of genetic diversity in lemurs, owing to small founder populations or reduced gene flow, can be mitigated by managed breeding efforts. Quantifying MHC diversity within individuals and between populations is the necessary first step to identifying potential improvements to captive management and conservation plans.  相似文献   

14.
The major histocompatibility complex (MHC) has an integral role in the immune system, and hence diversity at its genes may be of particular importance for the health of populations. In large populations, balancing selection maintains diversity in MHC genes, but theoretical expectations indicate that this form of selection is absent or inefficient in small populations. We examine the level of diversity at three MHC class II loci in the wolf population of Scandinavia, a population naturally recolonized with a genetic contribution from as few as three founders, and in four neighbouring wolf populations. In the Scandinavian wolf population, two alleles were found for each locus and the distribution of alleles is compatible with their linkage into two haplotypes. Changes in the level of heterozygosity over time since recolonization demonstrate the effects of the proposed arrival of an immigrant wolf. The maintenance of diversity is shown to be compatible with a neutral, random allocation of alleles, in conjunction with crossing between packs. A total of 15 DRB1, seven DQA and 10 DQB1 alleles are found in four neighbouring wolf populations, with substantial sharing across populations. Even in these larger populations, bottlenecks and fragmentation with consequent genetic drift are likely to have resulted in few indicators for balancing selection and significant differentiation of populations.  相似文献   

15.
The major histocompatibility complex (MHC) is one of the most polymorphic regions of the genome, likely due to balancing selection acting to maintain alleles over time. Lack of MHC variability has been attributed to factors such as genetic drift in small populations and relaxed selection pressure. The Galápagos penguin (Spheniscus mendiculus), endemic to the Galápagos Islands, is the only penguin that occurs on the equator. It relies upon cold, nutrient-rich upwellings and experiences severe population declines when ocean temperatures rise during El Niño events. These bottlenecks, occurring in an already small population, have likely resulted in reduced genetic diversity in this species. In this study, we used MHC class II exon 2 sequence data from a DRB1-like gene to characterize the amount of genetic variation at the MHC in 30 Galápagos penguins, as well as one Magellanic penguin (S. magellanicus) and two king penguins (Aptenodytes patagonicus), and compared it to that in five other penguin species for which published data exist. We found that the Galápagos penguin had the lowest MHC diversity (as measured by number of polymorphic sites and average divergence among alleles) of the eight penguin species studied. A phylogenetic analysis showed that Galápagos penguin MHC sequences are most closely related to Humboldt penguin (Spheniscus humboldti) sequences, its putative sister species based on other loci. An excess of non-synonymous mutations and a pattern of trans-specific evolution in the neighbor-joining tree suggest that selection is acting on the penguin MHC.  相似文献   

16.
Host-pathogen interactions are of particular interest in studies of the interplay between population dynamics and natural selection. The major histocompatibility complex (MHC) genes of demographically fluctuating species are highly suitable markers for such studies, because they are involved in initiating the immune response against pathogens and display a high level of adaptive genetic variation. We investigated whether two MHC class II genes (DQA1, DRB) were subjected to contemporary selection during increases in the density of fossorial water vole (Arvicola terrestris) populations, by comparing the neutral genetic structure of seven populations with that estimated from MHC genes. Tests for heterozygosity excess indicated that DQA1 was subject to intense balancing selection. No such selection operated on neutral markers. This pattern of selection became more marked with increasing abundance. In the low-abundance phase, when populations were geographically isolated, both overall differentiation and isolation-by-distance were more marked for MHC genes than for neutral markers. Model-based simulations identified DQA1 as an outlier (i.e. under selection) in a single population, suggesting the action of local selection in fragmented populations. The differences between MHC and neutral markers gradually disappeared with increasing effective migration between sites. In the high-abundance year, DQA1 displayed significantly lower levels of overall differentiation than the neutral markers. This gene therefore displayed stronger homogenization than observed under drift and migration alone. The observed signs of selection were much weaker for DRB. Spatial and temporal fluctuations in parasite pressure and locus-specific selection are probably the most plausible mechanisms underlying the observed changes in selection pattern during the demographic cycle.  相似文献   

17.
Populations of Arctic foxes (Vulpes lagopus) have been isolated on two of the Commander Islands (Bering and Mednyi) from the circumpolar distributed mainland population since the Pleistocene. In 1970-1980, an epizootic outbreak of mange caused a severe population decline on Mednyi Island. Genes of the major histocompatibility complex (MHC) play a primary role in infectious disease resistance. The main objectives of our study were to compare contemporary variation of MHC class II in mainland and island Arctic foxes, and to document the effects of the isolation and the recent bottleneck on MHC polymorphism by analyzing samples from historical and contemporary Arctic foxes. In 184 individuals, we found 25 unique MHC class II DRB and DQB alleles, and identified evidence of balancing selection maintaining allelic lineages over time at both loci. Twenty different MHC alleles were observed in mainland foxes and eight in Bering Island foxes. The historical Mednyi population contained five alleles and all contemporary individuals were monomorphic at both DRB and DQB. Our data indicate that despite positive and diversifying selection leading to elevated rates of amino acid replacement in functionally important antigen-binding sites, below a certain population size, balancing selection may not be strong enough to maintain genetic diversity in functionally important genes. This may have important fitness consequences and might explain the high pathogen susceptibility in some island populations. This is the first study that compares MHC diversity before and after a bottleneck in a wild canid population using DNA from museum samples.  相似文献   

18.
MHC class II genes in European wolves: a comparison with dogs   总被引:5,自引:5,他引:0  
The genome of the grey wolf, one of the most widely distributed land mammal species, has been subjected to both stochastic factors, including biogeographical subdivision and population fragmentation, and strong selection during the domestication of the dog. To explore the effects of drift and selection on the partitioning of MHC variation in the diversification of species, we present nine DQA, 10 DQB, and 17 DRB1 sequences of the second exon for European wolves and compare them with sequences of North American wolves and dogs. The relatively large number of class II alleles present in both European and North American wolves attests to their large historical population sizes, yet there are few alleles shared between these regions at DQB and DRB1. Similarly, the dog has an extensive array of class II MHC alleles, a consequence of a genetically diverse origin, but allelic overlap with wolves only at DQA. Although we might expect a progression from shared alleles to shared allelic lineages during differentiation, the partitioning of diversity between wolves and dogs at DQB and DRB1 differs from that at DQA. Furthermore, an extensive region of nucleotide sequence shared between DRB1 and DQB alleles and a shared motif suggests intergenic recombination may have contributed to MHC diversity in the Canidae.  相似文献   

19.
Genes of the major histocompatibility complex, which are the most polymorphic of all vertebrate genes, are a pre‐eminent system for the study of selective pressures that arise from host–pathogen interactions. Balancing selection capable of maintaining high polymorphism should lead to the homogenization of MHC allele frequencies among populations, but there is some evidence to suggest that diversifying selection also operates on the MHC. However, the pattern of population structure observed at MHC loci is likely to depend on the spatial and/or temporal scale examined. Here, we investigated selection acting on MHC genes at different geographic scales using Venezuelan guppy populations inhabiting four regions. We found a significant correlation between MHC and microsatellite allelic richness across populations, which suggests the role of genetic drift in shaping MHC diversity. However, compared to microsatellites, more MHC variation was explained by differences between populations within larger geographic regions and less by the differences between the regions. Furthermore, among proximate populations, variation in MHC allele frequencies was significantly higher compared to microsatellites, indicating that selection acting on MHC may increase population structure at small spatial scales. However, in populations that have significantly diverged at neutral markers, the population‐genetic signature of diversifying selection may be eradicated in the long term by that of balancing selection, which acts to preserve rare alleles and thus maintain a common pool of MHC alleles.  相似文献   

20.
A major goal of evolutionary biology is to understand how selection drives local adaptation. For example, the major histocompatibility complex (MHC) plays an important role in the immune system, and high levels of MHC variation are thought to be a form of adaptation in natural populations. Individual MHC composition may influence parasite resistance via advantages associated with 1) heterozygosity, because heterozygotes recognize a broader range of different antigens than homozygotes (heterozygote advantage); 2) highly variable amino acid sequences in MHC alleles, allowing individuals to bind a broader spectrum of parasite-derived peptides (divergent-alleles advantage, a mechanistic variant of the heterozygote advantage model); or 3) specific MHC alleles (rare allele advantage or frequency dependent selection). We investigated relationships between gastrointestinal nematode burden and both adaptive immune gene variability (MHC class II DRB) and neutral microsatellites in free-living gray mouse lemurs (Microcebus murinus) native to a dry deciduous forest population in western Madagascar to test these hypotheses. The individual MHC composition was related to parasite infestation. Specific MHC alleles were involved in parasite resistance and the presence of common alleles negatively influenced infestation intensity. We found no support for the heterozygote advantage hypothesis, but we did find support for the divergent-MHC allele advantage hypothesis: Individuals with very divergent MHC alleles carried fewer and less intense nematode infestations than individuals with more similar alleles in the more variable dry deciduous forest population. These results indicate that intestinal parasites are important selection pressures under natural conditions and suggest that different selection mechanisms are not mutually exclusive. In contrast, we detected no association between neutral overall individual genetic diversity (measured via 17 microsatellites) and parasite load. Finally, we investigated the ubiquity of parasite-driven selection mechanisms by comparing our results with a previous study of a mouse lemur population from the climatically different littoral forest in southeastern Madagascar, ca. 500 km away. This revealed that different specific MHC alleles were involved in parasite resistance in the 2 habitats, showing that gene-parasite associations are not consistent between populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号