首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Land use change and biological invasions collectively threaten biodiversity. Yet, few studies have addressed how altering the landscape structure and nutrient supply can promote biological invasions and particularly invasive spread (the spread of an invader from the place of introduction), or asked whether and how these factors interact with biotic interactions and invader properties. We here bridge this knowledge gap by providing a holistic network-based approach. Our approach combines a trophic network model with a spatial network model allowing us to test which combinations of abiotic and biotic factors can facilitate invasions and in particular invasive spread in food webs. We numerically simulated 6300 single-species invasions in clustered and random landscapes at different levels of nutrient supply. In total, our simulation experiment yielded 69% successful invasions – 71% in clustered landscapes and 66% in random landscapes, with the proportion of successful invasions increasing with nutrient supply. However, invasive spread was generally higher in random than in clustered landscapes. The latter can facilitate invasive spread within a habitat cluster, but prevent invasive spread between clusters. Low nutrient levels generally prevented the establishment of invasive species and their subsequent spread. However, successful invaders could have more severe impacts as they contribute more to total biomass density and species richness under such conditions. Good dispersal abilities drive the broad-scale spread of invasive species in fragmented landscapes. Our approach makes an important contribution towards a better understanding of what combination of landscape and invader properties can facilitate or prevent invasive spread in natural ecosystems. This should allow ecologists to more effectively predict and manage biological invasions.  相似文献   

2.
As the number of biological invasions increases, interactions between different invasive species will become increasingly important. Several studies have examined facilitative invader–invader interactions, potentially leading to invasional meltdown. However, if invader interactions are negative, invasional interference may lead to lower invader abundance and spread. To explore this possibility, we develop models of two competing invaders. A landscape simulation model examines the patterns created by two such species invading into the same region. We then apply the model to a case study of Carduus nutans L. and C. acanthoides L., two economically important invasive weeds that exhibit a spatially segregated distribution in central Pennsylvania, USA. The results of these spatially-explicit models are generally consistent with the results of classic Lotka–Volterra competition models, with widespread coexistence predicted if interspecific effects are weaker than intraspecific effects for both species. However, spatial segregation of the two species (with lower net densities and no further spread) may arise, particularly when interspecific competition is stronger than intraspecific competition. A moving area of overlap may result when one species is a superior competitor. In the Carduus system, our model suggests that invasional interference will lead to lower levels of each species when together, but a similar net level of thistle invasion due to the similarity of intra- and interspecific competition. Thus, invasional interference may have important implications for the distribution and management of invasive species.  相似文献   

3.
Biological invasion by non-native tree species can transform landscapes, and as a consequence, has received growing attention from researchers and managers alike. This problem is driven primarily by the naturalisation and invasion of tree species escaping from cultivation or forestry plantations. Furthermore, these invasions can be strongly influenced by the land-use matrix of the surrounding region, specific management of the source populations, and environmental conditions that influence seed dispersal or habitat quality for the invader. A major unresolved challenge for managing tree invasions in landscapes is how management should be deployed to contain or slow the spread of invading populations from one or more sources (e.g. plantations). We develop a spatial simulation model to test: (1) how to best prioritise the control of invasive tree populations spatially to slow or contain the biological invader when habitat quality varies in the landscape, and (2) how to allocate control effort among different management units when trees spread from many source populations. We first show that to slow down spread effectively, management strategy is less important than management effort. We then identify the conditions affecting the relative performance of different management strategies. At the landscape scale, targeting peripheral stands consistently yielded the best results whereas at the regional scale, management strategies needed to account for both habitat quality and tree life-history. Overall, our findings demonstrate that knowledge of how habitat affects tree life-history stages can improve management to contain or slow tree invasions by improving the spatial match between management effort and efficacy.  相似文献   

4.
There is growing realisation that integrating genetics and ecology is critical in the context of biological invasions, since the two are explicitly linked. So far, the focus of ecological genetics of invasive alien species (IAS) has been on determining the sources and routes of invasions, and the genetic make-up of founding populations, which is critical for defining and testing ecological and evolutionary hypotheses. However an ecological genetics approach can be extended to investigate questions about invasion success and impacts on native, recipient species. Here, we discuss recent progress in the field, provide overviews of recent methodological advances, and highlight areas that we believe are of particular interest for future research. First, we discuss the main insights from studies that have inferred source populations and invasion routes using molecular genetic data, with particular focus on the role of genetic diversity, adaptation and admixture in invasion success. Second, we consider how genetic tools can lead to a better understanding of patterns of dispersal, which is critical to predicting the spread of invasive species, and how studying invasions can shed light on the evolution of dispersal. Finally, we explore the potential for combining molecular genetic data and ecological network modelling to investigate community interactions such as those between predator and prey, and host and parasite. We conclude that invasions are excellent model systems for understanding the role of natural selection in shaping phenotypes and that an ecological genetics approach offers great potential for addressing fundamental questions in invasion biology.  相似文献   

5.
Species Invasiveness in Biological Invasions: A Modelling Approach   总被引:3,自引:0,他引:3  
The study of invasiveness, the traits that enable a species to invade a habitat, and invasibility, the habitat characteristics that determine its susceptibility to the establishment and spread of an invasive species, provide a useful conceptual framework to formulate the biological invasion problem in a modelling context. Another important aspect is the complex interaction emerging among the invader species, the noninvader species already present in the habitat, and the habitat itself. Following a modelling approach to the biological invasion problem, we present a spatially explicit cellular automaton model (Interacting Multiple Cellular Automata (IMCA)). We use field parameters from the invader Gleditsia triacanthos and the native Lithraea ternifolia in montane forests of central Argentina as a case study to compare outputs and performance of different models. We use field parameters from another invader, Ligustrum lucidum, and the native Fagara coco from the same system to run the cellular automaton model. We compare model predictions with invasion values from aerial photographs. We discuss in detail the importance of factors affecting species invasiveness, and give some insights into habitat invasibility and the role of interactions between them. Finally, we discuss the relevance of mathematical modelling for studying and predicting biological invasions. The IMCA model provided a suitable context for integrating invasiveness, invasibility, and the interactions. In the invasion system studied, the presence of an invader's juvenile bank not only accelerated the rate of invasion but was essential to ensure invasion. Using the IMCA model, we were able to determine that not only adult survival but particularly longevity of the native species influenced the spread velocity of the invader, at least when a juvenile bank is present. Other factors determining velocity of invasion detected by the IMCA model were seed dispersal distance and age of reproductive maturity. We derived relationships between species' adult survival, fecundity and longevity of both theoretical and applied relevance for biological invasions. Invasion velocities calculated from the aerial photographs agreed well with predictions of the IMCA model.  相似文献   

6.
Species invasions into ancient lakes are an important but little understood phenomenon. At ancient Lake Ohrid, a systematic assessment of invasive mollusc species using morphological and genetic data was conducted from 2003 to 2012. Two globally invasive gastropod species, Physa acuta and Ferrissia fragilis, have recently been discovered at 4 out of 386 sites. These sites are anthropogenically impacted. The invasive species co-occur with endemics. Phylogenetic analyses of populations from native and invaded ranges of both species confirmed their identities and provided insights into their invasion histories. Accordingly, P. acuta is genetically more diverse than F. fragilis. Both species are currently present in a considerable number of lakes on the Balkan Peninsula. Possible future trends in Lake Ohrid and the Balkans are discussed and further spread of both species is likely. Given the ongoing environmental change in Lake Ohrid, the number of observations of non-indigenous or other widespread species will probably rise in the coming years and such species and their impact on native species should be carefully monitored. Moreover, ancient lakes with recurrent invasions of alien species might serve as interesting model systems for the study of important topics of invasion biology.  相似文献   

7.
Biological invasions may cause serious damage to the native environments and threaten the native biodiversity. Molecular genetic approaches have been found to be powerful tools for investigating the ecological and evolutionary aspects of biological invasions because the genetic structure and level of genetic variation of an invasive species are changed following its invasion. The present article reviews the use of molecular markers in addressing various aspects of invasive species. The application of these techniques has shown that many invasive species are actually "cryptic" species – species whose uniqueness is only recognizable at the genetic level. An estimation of the actual number of invasive species is essential when evaluating its ecological and economic impacts. Molecular genetic approaches have also enabled the source populations of invasive species to be identified. Reconstructions of invasion histories are crucial to preventing future invasions and conserving the native biodiversity, while comparisons of genetic variations between the native and introduced populations provide valuable opportunities to elucidate the mechanisms of rapid adaptation demonstrated by many invasive species.  相似文献   

8.
To become invasive, exotic species have to succeed in the consecutive phases of introduction, naturalization, and invasion. Each of these phases leaves traces in genetic structure, which may affect the species’ success in subsequent phases. We examined this interplay of genetic structure and invasion dynamics in the South African Ragwort (Senecio inaequidens), one of Europe’s fastest plant invaders. We used AFLP and microsatellite markers to analyze 19 native African and 32 invasive European populations. In combination with historic data, we distinguished invasion routes and traced them back to the native source areas. This revealed that different introduction sites had markedly different success in the three invasion phases. Notably, an observed lag‐phase in Northern Germany was evidently not terminated by factors increasing the invasiveness of the resident population but by invasive spread from another introduction centre. The lineage invading Central Europe was introduced to sites in which winters are more benign than in the native source region. Subsequently, this lineage spread into areas in which winter temperatures match the native climate more closely. Genetic diversity clearly increases with population age in Europe and less clearly decreases with spread rate up to population establishment. This indicates that gene flow along well‐connected invasion routes counteracted losses of genetic diversity during rapid spread. In summary, this study suggests that multiple introductions, environmental preadaptation and high gene flow along invasion routes contributed to the success of this rapid invader. More generally, it demonstrates the benefit of combining genetic, historical, and climatic data for understanding biological invasions.  相似文献   

9.
Intraspecific hybridization between diverged populations can enhance fitness via various genetic mechanisms. The benefits of such admixture have been proposed to be particularly relevant in biological invasions, when invasive populations originating from different source populations are found sympatrically. However, it remains poorly understood if admixture is an important contributor to plant invasive success and how admixture effects compare between invasive and native ranges. Here, we used experimental crosses in Lythrum salicaria, a species with well-established history of multiple introductions to Eastern North America, to quantify and compare admixture effects in native European and invasive North American populations. We observed heterosis in between-population crosses both in native and invasive ranges. However, invasive-range heterosis was restricted to crosses between two different Eastern and Western invasion fronts, whereas heterosis was absent in geographically distant crosses within a single large invasion front. Our results suggest that multiple introductions have led to already-admixed invasion fronts, such that experimental crosses do not further increase performance, but that contact between different invasion fronts further enhances fitness after admixture. Thus, intra-continental movement of invasive plants in their introduced range has the potential to boost invasiveness even in well-established and successfully spreading invasive species.  相似文献   

10.
Invasion biology suffers from a lack of the ability to predict the outcome of particular invasions because of reliance on verbal models and lack of rigorous experimental data at the appropriate scale. More progress is likely to be made by considering invasions as population-level phenomena and initially focusing on specific taxa or particular categories of invasions. To this end, we propose a simple conceptual framework to motivate studies of invasion by salmonids (salmon, trout, grayling, and whitefish) in streams that emphasizes population-level mechanisms affecting native species and promoting spread by the invader. Specifically, the only direct mechanisms by which the abundance of the native species can decline are through biotic interactions which cause decreased reproductive rates or survival at specific life stages, net emigration, debilitating or fatal diseases introduced by the invader, or a combination of these factors. Conversely, abundance of the invader must increase by local reproduction, high survival, net immigration, or a combination of these factors. Review of existing salmonid invasion literature suggests that future studies could be improved by using manipulative field experiments at a spatial and temporal scale appropriate to address population-level processes, characterizing how movement affects the establishment and spread of an invader, and including abiotic context in experimental designs. Using the example of brook trout (Salvelinus fontinalis) invasion into streams containing native Colorado River cutthroat trout (Oncorhynchus clarki pleuriticus) in the central Rocky Mountains (USA), we demonstrate how the framework can be used to design a manipulative field experiment to test for population-level mechanisms causing ecological effects and promoting invasion success. Experiments of this type will give invasion ecologists a useful example of how a taxon-specific invasion framework can improve the ability to predict ecological effects, and provide fishery biologists with the quantitative foundation necessary to better manage stream salmonid invasions.  相似文献   

11.
Identifying areas at risk of invasion can be difficult when the distribution of a non-native species encompasses geographically disjunct regions. Understanding genealogical relationships among native and non-native populations can clarify the origins of fragmented distributions, which in turn can clarify how fast and far a non-native species may spread. We evaluated genetic variation across the native and invasive ranges of red shiner (Cyprinella lutrensis), a minnow known to displace and hybridize with native species, to reconstruct invasion pathways across the United States (USA). Examination of mitochondrial cytochrome-b variation found that native range populations of red shiner fall into four highly divergent lineages that likely warrant species recognition. Introduced red shiner populations in the eastern and western USA are derived from only two of these lineages. Western USA populations originate from the mid-western and western genetic lineages, whereas eastern introductions derive only from the mid-western lineage. Western USA invasive populations exhibit fewer, but more diverse haplotypes compared to eastern USA invasive populations. We also recovered an undescribed, divergent lineage of Cyprinella that has been cryptically introduced into the western USA, which raises the possibility that hybridization has proceeded following secondary contact between previously allopatric lineages. Approximate Bayesian Computation modeling suggests that the disjunct distribution of red shiner across North America is an agglomeration of independent regional invasions with distinct origins, rather than stepwise advance of an invasion front or secondary introductions across regions. Thus localized control may be effective in managing non-native red shiner, including further spread to areas of conservation concern.  相似文献   

12.
Biological invasions provide unique opportunities for studying life history trait changes over contemporary time scales. As spatial spread may be related to changes in parasite communities, several hypotheses (such as the evolution of increased competitive ability (EICA) or EICA‐refined hypotheses) suggest immune changes in invasive species along invasion gradients. Although native hosts may be subject to similar changes in parasite selection pressures, their immune responses have been rarely investigated in invasion contexts. In this study, we evaluated immune variations for invasive house mice Mus musculus domesticus, invasive black rats Rattus rattus and native rodents Mastomys erythroleucus and Mastomys natalensis along well‐characterised invasion gradients in Senegal. We focused on antibody‐mediated (natural antibodies and complement) and inflammatory (haptoglobin) responses. One invasion route was considered for each invasive species, and environmental conditions were recorded. Natural‐antibody mediated responses increased between sites of long‐established invasion and recently invaded sites only in house mice. Both invasive species exhibited higher inflammatory responses at the invasion front than in sites of long‐established invasion. The immune responses of native species did not change with the presence of invasive species. These patterns of immune variations do not support the EICA and EICA refined hypotheses, and they rather suggest a higher risk of exposure to parasites on the invasion front. Altogether, these results provide a first basis to further assess the role of immune changes in invasion success.  相似文献   

13.
Climatic niche shifts have been documented in a number of invasive species by comparing the native and adventive climatic ranges in which they occur. However, these shifts likely represent changes in the realized climatic niches of invasive species, and may not necessarily be driven by genetic changes in climatic affinities. Until now the role of rapid niche evolution in the spread of invasive species remains a challenging issue with conflicting results. Here, we document a likely genetically-based climatic niche expansion of an annual plant invader, the common ragweed (Ambrosia artemisiifolia L.), a highly allergenic invasive species causing substantial public health issues. To do so, we looked for recent evolutionary change at the upward migration front of its adventive range in the French Alps. Based on species climatic niche models estimated at both global and regional scales we stratified our sampling design to adequately capture the species niche, and localized populations suspected of niche expansion. Using a combination of species niche modeling, landscape genetics models and common garden measurements, we then related the species genetic structure and its phenotypic architecture across the climatic niche. Our results strongly suggest that the common ragweed is rapidly adapting to local climatic conditions at its invasion front and that it currently expands its niche toward colder and formerly unsuitable climates in the French Alps (i.e. in sites where niche models would not predict its occurrence). Such results, showing that species climatic niches can evolve on very short time scales, have important implications for predictive models of biological invasions that do not account for evolutionary processes.  相似文献   

14.
15.
Inconsistent use of terminology plagues the study and management of biological invasions. The term “invasive” has been used to describe inter alia (1) any introduced non-indigenous species; (2) introduced species that spread rapidly in a new region; and (3) introduced species that have harmful environmental impacts, particularly on native species. The second definition in various forms is more commonly used by ecologists, while the third definition is pervasive in policy papers and legislation. We tested the relationship between the invasiveness of an introduced species and its impact on native biodiversity. We quantified a species’ invasiveness by both its rate of establishment and its rate of spread, while its impact was assigned a categorical ranking based on the documented effects of the invader on native species populations. We found no correlations between these variables for introduced plants, mammals, fishes, invertebrates, amphibians and reptiles, suggesting that the mechanisms of invasion and impact are not strongly linked. Our results support the view that the term “invasive” should not be used to connote negative environmental impact.  相似文献   

16.
Post-establishment spread of invasive species is a major determinant of their impact, but the spatial pattern and temporal rhythm of secondary spread are often poorly known or understood. Here we examine the spread of the European rockweed Fucus serratus over 1,500 km of shoreline after its initial discovery in Pictou, Nova Scotia (Canada) in 1868. Building upon earlier periodic surveys, we document the current distribution of this invader and provide a historic analysis of the invasion, including the integration of the recently-detected multiple introductions from Europe. The initial spread was rapid in the southern Gulf of St. Lawrence (6.0 km year−1), likely due to both natural spread in a favorable environment and the extensive regional shipping traffic at the time which linked Pictou to several key ports in eastern Canada and northeast USA. Later spread, especially along the Atlantic coast of Nova Scotia, was slower (recently 0.9 km year−1), but included several major jumps (~50–500 km), undoubtedly due to human-mediated transport. Although the spatial extent of the invasion has increased over the past 140 years, it has experienced several remarkable events: apparent local extinctions of northern satellite populations, a major retraction (100–150 km) along the northwestern limits of its continuous range, and stalled invasions at several points and times during its southward progression. Distributional data suggest that this invader is excluding congeners in shallow zones and possibly kelp species in deeper zones. Genetic data from one contact zone showed hybridization with native F. distichus but no evidence for introgression in migrating F. serratus. Hybridization and several other reproductive traits likely contribute to the competitive dominance of the invader in this environment.  相似文献   

17.
基于分子生物学方法的外来入侵物种入侵历史重构   总被引:1,自引:0,他引:1  
生物入侵是一个世界性的问题。全球每年因生物入侵造成的损失超过1万亿美元。探究入侵物种在入侵地的入侵历史对了解生物入侵的生物生态学机制、制定阻截及防除措施有重要意义。分子标记方法的兴起和大规模应用打开了入侵生物入侵历史研究的新天地。采用分子标记的方法可鉴定入侵物种的种类、追溯其来源地、回溯其扩散路径、分析扩散模式及探究物种入侵过程中对入侵种群本身的变化及其对生态系统所造成的各种影响。分子标记的应用使得多个入侵物种的入侵历史得以重现。由于分子标记方法重构的入侵历史受采样范围、采用的分子标记的种类及数量等因素的影响,该方法呈现入侵历史是否是真实发生的入侵过程还存在争议。  相似文献   

18.
Investigations of biological invasions focus on patterns and processes that are related to introduction, establishment, spread and impacts of introduced species. This review focuses on the ecological interactions operating during invasions by the most prominent group of insect vectors of disease, mosquitoes. First, we review characteristics of non-native mosquito species that have established viable populations, and those invasive species that have spread widely and had major impacts, testing whether biotic characteristics are associated with the transition from established non-native to invasive. Second, we review the roles of interspecific competition, apparent competition, predation, intraguild predation and climatic limitation as causes of impacts on residents or as barriers to invasion. We concentrate on the best-studied invasive mosquito, Aedes albopictus, evaluating the application of basic ecological theory to invasions by Aedes albopictus. We develop a model based on observations of Aedes albopictus for effects of resource competition and predation as barriers to invasion, evaluating which community and ecosystem characteristics favour invasion. Third, we evaluate the ways in which invasive mosquitoes have contributed to outbreaks of human and animal disease, considering specifically whether invasive mosquitoes create novel health threats, or modify disease transmission for existing pathogen-host systems.  相似文献   

19.
Biological invasions represent an important component of global change, with potentially huge detrimental effects on native biological biodiversity and ecosystems. Knowledge about invasion history provides information about the invasion process and the origin and genetic composition of invading populations. To clarify the source and invasive routes of a successful world-wide invader, the veined rapa whelk, Rapana venosa, genetic variability of samples from five representative native populations from coasts of Japan and China and 13 worldwide invasive populations was analyzed using 11 nuclear microsatellite loci. A dramatic decrease of genetic variation was detected in the invasive populations compared with the native populations. The results demonstrated that R. venosa was capable of establishing itself in many areas despite a dramatic genetic bottleneck, suggesting that a remarkable reduction of genetic diversity is not a limiting factor for short-term success of this invasive species. Considering the lack of mitochondrial variation previously observed in the invasive populations, the dramatic genetic bottleneck and the allele distribution detected using microsatellites suggested that the original introduced Black Sea population could have been founded by very few individuals, perhaps only a single female and a single male. The initial invasive Black Sea population was likely an accidental introduction from Japan, and then invaded the Adriatic Sea by range expansion, which served as a source for subsequent invasive populations in Europe and America by various transport vectors. In addition, microsatellite alleles in the invasive populations showed a tendency to mutate with the addition or deletion of a single repeat, which is consistent with the stepwise mutation model. Our findings provide a good example of how an aquatic invader with a drastic genetic bottleneck and very low genetic diversity rapidly expands its geographical range.  相似文献   

20.
Determining how various factors contribute to the invasibility of systems is essential for both understanding community formation and informing management of natural areas. Research demonstrating that predators can provide biotic resistance to invasions by consuming invasive species has led to the presence of healthy predator populations being associated with reduced invasion potential of ecosystems. However, predators structure communities in many ways and their presence could also potentially facilitate invasions if they decrease populations of native species that compete with or consume an invader. We considered these two impacts of predators on invasion by analyzing the effects of two keystone predators (Pisaster spp. and Enhydra lutris nereis) on two foundation species (a native mussel Mytilus californianus and the invasive exotic bryozoan Watersipora subtorquata, a putative competitor for space with Mytilus californianus). Both native predators were found to facilitate the invasion of the exotic bryozoan, and the rate of invasion was highest when both predators were present. Facilitation of W. subtorquata occurred via indirect mechanisms that partly involved the removal of a competitor (mussels) via predation. These results illustrate that although predators can provide biotic resistance to invasion, healthy predator populations do not always confer this advantage and in fact may facilitate invasions. Therefore, implementation of management actions to enhance populations of top predators could also potentially increase the invasibility of some ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号