首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aim Small mammal species richness and relative abundance vary along elevational gradients, but there are different patterns that exist. This study reports the patterns of distribution and abundance of small mammals along the broader elevational gradient of Mt. Qilian range. Location The study was conducted in the Mt. Qilian range, north‐western China, from June to August 2001. Methods Removal trapping was conducted using a standardized technique at 7 sites ranging between 1600 and 3900 m elevation within three transects. Correlation, regression and graphical analyses were used to evaluate the diversity patterns along this elevational gradient. Results In total, 586 individuals representing 18 nonvolant small mammal species were collected during 20 160 trap nights. Species composition was different among the three transects with 6 (33%) of the species found only within one transect. Elevational distribution and relative abundance of small rodents showed substantial spatial variation, with only 2 species showing nonsignificant capture frequencies across elevations. Despite these variations, some general patterns of elevational distribution emerged: humped‐shape relationships between species diversity and elevation were noted in all three transects with diversity peaks at middle elevations. In addition, relative abundance was negatively correlated with elevation. Conclusions Results indicate that maximum richness and diversity of nonvolant small mammals occurred at mid‐elevations where several types of plants reached their maximum diversity and primary productivity, and where rainfall and humidity reached a maximum. It is demonstrated that the mid‐elevation bulge is a general feature of at least a large portion of the biota on the Mt. Qilian range.  相似文献   

3.
Our understanding of geographic patterns of species diversity and the underlying mechanisms is increasing rapidly, whereas the temporal variation in these patterns remains poorly understood. We examined the seasonal species richness and species turnover patterns of non‐volant small mammals along three subtropical elevational gradients in southwest China. Small mammal diversity was surveyed in two seasons (early wet season and late wet season) using a standardized sampling protocol. The comparison of species richness patterns between two seasons indicated a temporal component in magnitude and shape, with species richness at high elevations clearly increased during the late wet season. Species richness demonstrated weak correlations with modelled temperature and precipitation. The elevational pattern of species turnover measured by Chao‐Sørenson similarity index also changed seasonally, even though the temporal pattern varied with scale. Species turnover between neighboring elevations at high elevations was slower in the late wet season. Meanwhile, there was an acceleration of species turnover along the whole range of the gradient. The seasonal change in species diversity patterns may be due to population‐level increases in abundance and elevational migration, whereas seasonal variation in factors other than temperature and precipitation may play a greater role in driving seasonal diversity patterns. Our study strongly supports the seasonality in elevational patterns of small mammal diversity in subtropical montane forests. Thus it is recommended that subsequent field surveys consider temporal sampling replicate for elevational diversity studies.  相似文献   

4.
Abstract. To determine the generality of avian diversity patterns, we investigated patterns of elevational zonation shown by birds and mammals along the eastern slope of the Andes Mountains in southeastern Peru. The strong environmental gradient sampled, entirely within Peru's Manu National Park and Biosphere Reserve, supports highly diverse faunas. Elevational distributions of 901 bird species, 129 bat species, and twenty-eight species of native mice exhibit contrasting patterns in species richness, species composition, and species turnover. Birds and bats showed smooth declines of species richness with elevation, whereas the richness of mouse assemblages was unrelated to elevation. For all three groups, the greatest differences were between lowland and highland faunas, although cutoff points for this contrast varied among groups (≈ 500 m for birds, 750 m for bats, and 1000 m for mice). Differences in composition also separated bird and bat faunas on either side of c. 1400 m (the boundary between montance forest and cloud forest); for mice, this faunal transition may take place nearer to 2000 m. Bird and bat faunas lacked the more discrete zonations suggested for mouse assemblages, as indicated by elevational range profiles and nested subset analyses. Distinct highland assemblages are apparent in two-dimensional histograms of range limits of birds and mice, but not for bats. Highland bat species occupy broader elevational ranges than lowland bat species, but for both birds and mice, species at intermediate elevations had the broadest amplitudes. Finally, clumping of range maxima and minima along the gradient identified zones of pronounced species turnover in each group, but these were generally not strongly associated with the locations of ecotones. Differences in zonation of these groups appear to reflect their different biological attributes and phylogenetic histories. Such differences obviously complicate discussions of ‘general’ diversity patterns, and limit the usefulness of birds to forecast or predict diversity patterns in other more poorly known groups—other groups may show elevated diversity and endemism in areas where avian diversity patterns appear unremarkable. The pronounced contrasts between bats and mice, and the generally intermediate character of avian patterns, suggest that future analyses might profitably partition birds into finer, more homogeneous groups of historically and/or ecologically similar species. Group differences in zonation may ultimately prove explicable with information on both species-abundance patterns and resource distributions.  相似文献   

5.
At least 193 species of mammals are known to occur within the Manu Biosphere Reserve in south-eastern Peru, contributing to its stature as one of the world's richest protected areas. Bats (Order Chiroptera) comprise more than 42% (82 species) of this diversity. Analyses of bat capture records over a transect extending more than 3 km in elevation show that most bat species at Manu are widely distributed in the Amazon Basin. Few are montane endemics or are localized in south-eastern Peru, although exceptions to this generalization include two species new to science. Highland bat faunas tend to be attenuated versions of those found below, and the elevational zonation of bat communities is weak. Species turnover with elevation is monotonic and more-or-less smooth, with Jaccard's similarity values falling to 0.5 for sites differing by 750m in elevation. Subtle and orderly change in species composition with elevation is also reflected in the nested-subset structure of these communities; over 19 different levels, this pattern of hierarchical structure is both striking and highly significant. Elevational ranges of species generally increase with elevation, in accordance with Stevens' extension of 'Rapoport's rule' of range amplitude. However, support for 'Stevens' rule' may be trivial, given Amazonian richness and Andean impoverishment. Reduced richness and poorly developed endemism in Andean bat communities contrast with patterns shown by sympatric rodent faunas, which are diverse and strongly endemic on the Altiplano and markedly zoned along the Eastern Versant. Contrasts are less sharp with bird communities, which nevertheless exhibit stronger zonation and higher endemicity. Factors responsible for these distinctive distributional patterns are discussed.  相似文献   

6.
Two distinct diversity patterns are observed along tropical elevations: (a) decreasing number of species toward high elevations and (b) a hump-shaped pattern with the peak at mid-elevations. As diversity is likely supported by ecological capacity of the environment, decomposition of the overall richness into ecological facets and considering number of individuals within them is crucial for the proper understanding of richness patterns. We examined abundances of different avian guilds along the forested part of the elevational gradient on Mt. Cameroon. We (a) compared richness and abundance elevational patterns, (b) assessed the effective contribution of multiple guilds to richness and abundance patterns, and (c) assessed to what extent observed abundances of guilds differed from those expected by chance. We sampled birds in 2011–2015 during the dry season at seven elevations (30 m, 350 m, 650 m, 1100 m, 1500 m, 1850 m, 2200 m a.s.l.). For each assemblage, we estimated proportions of species and individuals that use particular diets, foraging modes, and feeding strata. We found that a rather decreasing pattern of species richness turns into a hump-shaped one if we look at the total abundances, implying different mechanisms behind these patterns. The number of species and individuals thus do not seem to be directly related, contrary to “the more-individuals hypothesis.” Abundances of foliage gleaners at mid-elevations, nectarivores at high elevations, and frugivores at low elevations deviated from random expectations. Our results imply that parts of ecological space are filled separately by bird species and individuals along elevation of Mt. Cameroon.  相似文献   

7.
群落分类多样性和功能多样性的海拔格局研究, 是了解生物多样性空间分布现状、揭示多样性维持和变化机制的重要途径。当前对水生昆虫分类多样性和功能多样性沿海拔梯度分布格局, 及其尺度依赖性依旧缺乏深入研究。本文基于2013-2018年在云南澜沧江流域500-3,900 m海拔梯度共149个溪流点位的水生昆虫群落调查数据, 利用线性或二次回归模型探索并比较了局部尺度(点位尺度)和不同区域尺度(100 m、150 m、200 m、250 m海拔段)的分类多样性指数(物种丰富度指数、Simpson多样性指数和物种均匀度指数)和功能多样性指数(树状图功能多样性指数(dbFD)、Rao二次熵指数(RaoQ)和功能均匀度指数(FEve))的海拔格局。结果表明, 在局部尺度, 物种丰富度指数和dbFD指数沿海拔梯度均无显著分布特征, Simpson多样性指数、RaoQ指数、物种均匀度指数和FEve指数沿海拔梯度呈现U型或者单调递减趋势。在区域尺度, 随着区域海拔带宽度的增加, 物种丰富度指数沿海拔呈不显著的单调递减格局, 但dbFD指数沿海拔分布由U型转变为单调递减趋势; Simpson多样性指数和RaoQ指数沿海拔梯度由显著U型趋势转变为无显著分布特征; 物种均匀度指数沿海拔梯度无显著分布特征, 但FEve指数呈显著增加的海拔格局。综上, 群落分类多样性指数和功能多样性指数沿海拔梯度分布存在局部和区域尺度的空间差异, 但区域尺度下二者海拔格局随海拔带宽度的增加存在一定程度的一致性。  相似文献   

8.
We examined the elevational patterns of plant species along two transects on Mt Seorak, South Korea, and calculated four richness indices from field survey data: total number of species per 100 m elevational band; mean number of species per plot in each elevational band; total estimated number of species per elevational band; and beta diversity of each elevational band. We evaluated the effects of area, mean distance between plots, climatic variables (mean annual temperature and precipitation), and productivity on the richness patterns along the two transects. In total, 235 plant species belonging to 72 families and 161 genera were recorded from 130 plots along the two transects. The analyses revealed different patterns including monotonic decline, and unimodal and multimodal shapes for richness indices of total, woody, and herbaceous plants with the change in elevation along the two transects. The proportion of suitable area (as opposed to rocky areas) was the best predictor for total number of species per elevational band, mean number of species per plot, and total estimated number of species per elevational band of total and herbaceous plants along the two transects. Mean distance between plots was the most important variable for beta diversity of all plant groups. Although regional area, climatic variables, and productivity were important variables for predicting woody plant richness patterns, the effects were not consistent between the two transects. Our study suggests that elevational species richness patterns may differ not only among different plant groups, but also between nearby elevational transects, and that these differences are explained by differences in the underlying mechanisms shaping these patterns.  相似文献   

9.
Understanding diversity patterns along environmental gradients and their underlying mechanisms is a major topic in current biodiversity research. In this study, we investigate for the first time elevational patterns of vascular plant species richness and endemism on a long-isolated continental island (Crete) that has experienced extensive post-isolation mountain uplift. We used all available data on distribution and elevational ranges of the Cretan plants to interpolate their presence between minimum and maximum elevations in 100-m elevational intervals, along the entire elevational gradient of Crete (0–2400 m). We evaluate the influence of elevation, area, mid-domain effect, elevational Rapoport effect and the post-isolation mountain uplift on plant species richness and endemism elevational patterns. Furthermore, we test the influence of the island condition and the post-isolation mountain uplift to the elevational range sizes of the Cretan plants, using the Peloponnese as a continental control area. Total species richness monotonically decreases with increasing elevation, while endemic species richness has a unimodal response to elevation showing a peak at mid-elevation intervals. Area alone explains a significant amount of variation in species richness along the elevational gradient. Mid-domain effect is not the underlying mechanism of the elevational gradient of plant species richness in Crete, and Rapoport''s rule only partly explains the observed patterns. Our results are largely congruent with the post-isolation uplift of the Cretan mountains and their colonization mainly by the available lowland vascular plant species, as high-elevation specialists are almost lacking from the Cretan flora. The increase in the proportion of Cretan endemics with increasing elevation can only be regarded as a result of diversification processes towards Cretan mountains (especially mid-elevation areas), supported by elevation-driven ecological isolation. Cretan plants have experienced elevational range expansion compared to the continental control area, as a result of ecological release triggered by increased species impoverishment with increasing elevation.  相似文献   

10.
Some previous studies along an elevational gradient on a tropical mountain documented that plant species richness decreases with increasing elevation. However, most of studies did not attempt to standardize the amount of sampling effort. In this paper, we employed a standardized sampling effort to study tree species richness along an elevational gradient on Mt. Bokor, a table-shaped mountain in southwestern Cambodia, and examined relationships between tree species richness and environmental factors. We used two methods to record tree species richness: first, we recorded trees taller than 4 m in 20 uniform plots (5 × 100 m) placed at 266–1048-m elevation; and second, we collected specimens along an elevational gradient from 200 to 1048 m. For both datasets, we applied rarefaction and a Chao1 estimator to standardize the sampling efforts. A generalized linear model (GLM) was used to test the relationship of species richness with elevation. We recorded 308 tree species from 20 plots and 389 tree species from the general collections. Species richness observed in 20 plots had a weak but non-significant correlation with elevation. Species richness estimated by rarefaction or Chao1 from both data sets also showed no significant correlations with elevation. Unlike many previous studies, tree species richness was nearly constant along the elevational gradient of Mt. Bokor where temperature and precipitation are expected to vary. We suggest that the table-shaped landscape of Mt. Bokor, where elevational interval areas do not significantly change between 200 and 900 m, may be a determinant of this constant species richness.  相似文献   

11.
Although elevational patterns of species richness have been well documented, how the drivers of richness gradients vary across ecological guilds has rarely been reported. Here, we examined the effects of spatial factors (area and mid‐domain effect; MDE) and environmental factors, including metrics of climate, productivity, and plant species richness on the richness of breeding birds across different ecological guilds defined by diet and foraging strategy. We surveyed 12 elevation bands at intervals of 300 m between 1,800 and 5,400 m a.s.l using line‐transect methods throughout the wet season in the central Himalaya, China. Multiple regression models and hierarchical partitioning were used to assess the relative importance of spatial and environmental factors on overall bird richness and guild richness (i.e., the richness of species within each guild). Our results showed that richness for all birds and most guilds displayed hump‐shaped elevational trends, which peaked at an elevation of 3,300–3,600 m, although richness of ground‐feeding birds peaked at a higher elevation band (4,200–4,500 m). The Normalized Difference Vegetation Index (NDVI)—an index of primary productivity—and habitat heterogeneity were important factors in explaining overall bird richness as well as that of insectivores and omnivores, with geometric constraints (i.e., the MDE) of secondary importance. Granivore richness was not related to primary production but rather to open habitats (granivores were negatively influenced by habitat heterogeneity), where seeds might be abundant. Our findings provide direct evidence that the richness–environment relationship is often guild‐specific. Taken together, our study highlights the importance of considering how the effects of environmental and spatial factors on patterns of species richness may differ across ecological guilds, potentially leading to a deeper understanding of elevational diversity gradients and their implications for biodiversity conservation.  相似文献   

12.
The geographic ranges of many species have shifted polewards and uphill in elevation associated with climate warming, leading to increases in species richness at high latitudes and elevations. However, few studies have addressed community‐level responses to climate change across the entire elevational gradients of mountain ranges, or at warm lower latitudes where ecological diversity is expected to decline. Here, we show uphill shifts in butterfly species richness and composition in the Sierra de Guadarrama (central Spain) between 1967–1973 and 2004–2005. Butterfly communities with comparable species compositions shifted uphill by 293 m (± SE 26), consistent with an upward shift of approximately 225 m in mean annual isotherms. Species richness had a humped relationship with elevation, but declined between surveys, particularly at low elevations. Changes to species richness and composition primarily reflect the loss from lower elevations of species whose regional distributions are restricted to the mountains. The few colonizations by specialist low‐elevation species failed to compensate for the loss of high‐elevation species, because there are few low‐elevation species in the region and the habitat requirements of some of these prevent them from colonizing the mountain range. As a result, we estimated a net decline in species richness in approximately 90% of the region, and increasing community domination by widespread species. The results suggest that climate warming, combined with habitat loss and other drivers of biological change, could lead to significant losses in ecological diversity in mountains and other regions where species encounter their lower latitudinal‐range margins.  相似文献   

13.
We used a standard sampling protocol to measure elevational patterns of species richness and abundance of eusocial paper wasps (Hymenoptera: Vespidae) in Costa Rica. The sample transect of six sites spanned approximately 2000 m in elevation from lowland to montane forest. Species accumulation curves and species richness estimates both document a low elevation peak in paper wasp species richness at 50 and 300 m asl, with a decline in species richness at higher elevations. Comparison of species composition among elevations revealed strong species turnover from a rich lowland fauna to a depauperate, but distinct, montane fauna. We also observed a general trend toward a greater abundance of paper wasps at higher elevations, a pattern not usually observed in eusocial insects. Army ant species that prey on paper wasps declined in abundance with elevation across the sample transect, a pattern that has been observed at other sites. We discuss the possibility that elevational changes in predation pressure affect variation in paper wasp abundance and species richness. Eusocial paper wasp species employ one of two modes of colony founding, independent and swarm founding. We found that the total abundance of individual swarm-founding wasps was higher at all elevations than the abundance of independent-founding wasps, supporting previous suggestions that Neotropical swarm founders are more successful ecologically.  相似文献   

14.
A monotonic decline in species richness with increasing elevation has often been considered a general pattern, but recent evidence suggests that the dominant pattern is hump-shaped with maximum richness occurring at some mid-elevation point. To analyse the relationship between species richness and elevation at a local scale we surveyed birds from lowlands to timberline in the Bolivian Andes. We divided the transect into 12 elevational belts of 250 m and standardized species richness in each belt with both individual- and sample-based rarefaction and richness estimation. The empirical data were then correlated to four explanatory variables: 1) area per elevational belt, 2) elevation (also representing ecosystem productivity), 3) a mid-domain effect (MDE) null model of geometrically constrained empirical range sizes, and 4) a hump-shaped model derived empirically for South American birds representing the regional species pool hypothesis. Local species richness peaked at ca 1000 m elevation, declined sharply to ca 1750 m, and then remained roughly constant. Elevation was the best single predictor, accounting for 78–85% of the variance in the empirical data. A multiple regression model with elevation, area, and MDE explained 85–90% of the variance. Monte Carlo simulations showed that the richness peak at 1000 m is the result of an overlap of two distinct avifaunas (lowland and highland) and that the correlation to MDE in the multiple regression was likely spurious. We recommend complementing correlation analyses involving MDE predictions with an examination of the distribution of range midpoints. The steep decline at mid-elevations was mainly due to a rapid loss of lowland species. The high-elevation plateau is striking and unexpected, but has also been found previously. It cannot be explained at present and exemplifies that despite several decades of research elevational gradients are still not well understood.  相似文献   

15.
Exploring elevational patterns in species richness and their underlying mechanisms is a major goal in biogeography and community ecology. Reptiles can be powerful model organisms to examine biogeographical patterns. In this study, we examine the elevational patterns of reptile species richness and test a series of hypotheses that may explain them. We sampled reptile communities along a tropical elevational gradient (100–1,500 m a.s.l.) in the Western Ghats of India using time‐constrained visual encounter surveys at each 100‐m elevation zone for 3 years. First, we investigated species richness patterns across elevation and the support of mid‐domain effect and Rapoport's rule. Second, we tested whether a series of bioclimatic (temperature and tree density) and spatial (mid‐domain effect and area) hypotheses explained species richness. We used linear regression and AICc to compare competing models for all reptiles, and each of the subgroups: snakes, lizards, and Western Ghats’ endemics. Overall reptile richness and lizard richness both displayed linear declines with elevation, which was best explained by temperature. Snake richness and endemic species richness did not systematically vary across elevation, and none of the potential hypotheses explained variation in them. This is the first standardized sampling of reptiles along an elevational gradient in the Western Ghats, and our results agree with the global view that temperature is the primary driver of ectotherm species richness. By establishing strong reptile diversity–temperature associations across elevation, our study also has implications for the impact of future climate change on range‐restricted species in the Western Ghats.  相似文献   

16.
Aim Epiphytes contribute up to 30% to the number of vascular plant species in certain global biodiversity hotspots, e.g. the Ecuadorian Andes. However, their large scale diversity patterns are still discussed on the base of results from a few, local epiphyte inventories. Consequently, explanatory models on epiphyte diversity concentrate on the impact of local climate on small scale epiphyte species richness. Our aim was to analyse large scale elevational patterns of epiphyte diversity integrating data from different geographic scales. Location Tropical America, with special emphasis on the Ecuadorian Andes. Methods Our study is based on two data sources. First, we analysed the elevational patterns of epiphyte diversity based on the Catalogue of the Vascular Plants of Ecuador and the Libro Rojo de las Plantas Endèmicas del Ecuador. Secondly, the floristic turnover between the epiphyte inventories of seven montane and four lowland study sites in the Neotropics was analysed. Results The floristic turnover between Neotropical montane epiphyte floras is higher than the one between lowland epiphyte floras. Montane study sites located only a few kilometres apart from each other show considerable differences in their epiphyte species inventories. Irrespectively of their similar dispersal mode, the floristic turnover is much higher for orchids than for Pteridophyta. The Orchidaceae are the species richest group in all of the examined 11 Neotropical epiphyte floras. At the larger scale of the Ecuadorian Flora, c. 50% of the species in the elevational zone with maximum epiphyte diversity (between 1000 and 1500 m) are orchids. Elevational patterns of epiphyte diversity strongly reflect patterns of Orchidaceae. Main conclusions Our results support the observation of a ‘mid‐elevation bulge’ of epiphyte diversity by Gentry and Dodson. It has been frequently shown that the high humidity in mid‐elevations is suitable to maintan a high epiphyte species richness. Our findings show that in addition, large scale epiphyte diversity in montane rain forest is increased by the high floristic turnover at local and regional scale. Based on the importance of Orchidaceae for epiphyte diversity, we discuss that speciation processes corresponding to the highly diverse environment are a driving force for endemism, floristic heterogeneity and consequently for large scale epiphyte species richness in montane forests.  相似文献   

17.
Ecosystems that provide environmental opportunities but are poor in species and functional richness generally support speciation as well as invasion processes. These processes are expected not to be equally effective along elevational gradients due to specific ecological, spatial, and anthropogenic filters, thus controlling the dispersal and establishment of species. Here, we investigate speciation and invasion processes along elevational gradients. We assess the vascular plant species richness as well as the number and percentage of endemic species and non‐native species systematically along three elevational gradients covering large parts of the climatic range of La Palma, Canary Islands. Species richness was negatively correlated with elevation, while the percentage of Canary endemic species showed a positive relationship. However, the percentage of Canary–Madeira endemics did not show a relationship with elevation. Non‐native species richness (indicating invasion) peaked at 500 m elevation and showed a consistent decline until about 1,200 m elevation. Above that limit, no non‐native species were present in the studied elevational gradients. Ecological, anthropogenic, and spatial filters control richness, diversification, and invasion with elevation. With increase in elevation, richness decreases due to species–area relationships. Ecological limitations of native ruderal species related to anthropogenic pressure are in line with the absence of non‐native species from high elevations indicating directional ecological filtering. Increase in ecological isolation with elevation drives diversification and thus increased percentages of Canary endemics. The best preserved eastern transect, including mature laurel forests, is an exception. The high percentage of Canary–Madeira endemics indicates the cloud forest's environmental uniqueness—and thus ecological isolation—beyond the Macaronesian islands.  相似文献   

18.
We examined general and family-specific patterns of vascular plant richness along a large elevational gradient (0?C3,670?m a.s.l.), assessed the continuity of these patterns and analysed their potential underlying causes in a high diversity region of the Sierra Madre del Sur, Oaxaca, Mexico. We used a vascular plant database constructed previously. The gradient was divided into 18 200-m elevation belts. To examine elevational patterns of richness, we used both observed and estimated (interpolated) species richness, as well as genus and family observed richness, for each belt. A generalised linear model (GLM) was used to assess the effect of altitude on area-corrected species richness (standard area?=?100?km2), and a numerical classification of the elevational belts based on species richness was performed. Overall, richness at the three taxonomic levels decreased with elevation, but some individual families departed from this pattern. A sharp drop in species richness was observed at 1,800?m, and the dendrogram separated two elevational floristic groups at this elevation. The GLM revealed a significant negative effect of elevation on species richness. Despite this overall decreasing pattern for vascular plants along this extensive gradient, an examination of some family-specific patterns revealed the existence of other elevation?Cdiversity relationships, indicating taxon-specific responses to elevation. The most noticeable discontinuity in species richness, at ca. 1,800?m, is likely related to a critical temperature isocline.  相似文献   

19.
The Tropical Andes are an important global biodiversity hotspot, harbouring extraordinarily high richness and endemism. Although elevational richness and speciation have been studied independently in some Andean groups, the evolutionary and ecological processes that explain elevational richness patterns in the Andes have not been analysed together. Herein, we elucidate the processes underlying Andean richness patterns using glassfrogs (Centrolenidae) as a model system. Glassfrogs show the widespread mid‐elevation diversity peak for both local and regional richness. Remarkably, these patterns are explained by greater time (montane museum) rather than faster speciation at mid‐elevations (montane species pump), despite the recency of the major Andean uplift. We also show for the first time that rates of climatic‐niche evolution and elevational change are related, supporting the hypothesis that climatic‐niche conservatism decelerates species' shifts in elevational distributions and underlies the mid‐elevation richness peak. These results may be relevant to other Andean clades and montane systems globally.  相似文献   

20.
Aim A global meta‐analysis was used to elucidate a mechanistic understanding of elevational species richness patterns of bats by examining both regional and local climatic factors, spatial constraints, sampling and interpolation. Based on these results, I propose the first climatic model for elevational gradients in species richness, and test it using preliminary bat data for two previously unexamined mountains. Location Global data set of bat species richness along elevational gradients from Old and New World mountains spanning 12.5° S to 38° N latitude. Methods Bat elevational studies were found through an extensive literature search. Use was made only of studies sampling  70% of the elevational gradient without significant sampling biases or strong anthropogenic disturbance. Undersampling and interpolation were explicitly examined with three levels of error analyses. The influence of spatial constraints was tested with a Monte Carlo simulation program, Mid‐Domain Null. Preliminary bat species richness data sets for two test mountains were compiled from specimen records from 12 US museum collections. Results Equal support was found for decreasing species richness with elevation and mid‐elevation peaks. Patterns were robust to substantial amounts of error, and did not appear to be a consequence of spatial constraints. Bat elevational richness patterns were related to local climatic gradients. Species richness was highest where both temperature and water availability were high, and declined as temperature and water availability decreased. Mid‐elevational peaks occurred on mountains with dry, arid bases, and decreasing species richness occurred on mountains with wet, warm bases. A preliminary analysis of bat richness patterns on elevational gradients in western Peru (dry base) and the Olympic Mountains, WA (wet base), supported the predictions of the climate model. Main conclusions The relationship between species richness and combined temperature and water availability may be due to both direct (thermoregulatory constraints) and indirect (food resources) factors. Abundance was positively correlated with species richness, suggesting that bat species richness may also be related to productivity. The climatic model may be applicable to other taxonomic groups with similar ecological constraints, for instance certain bird, insect and amphibian clades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号