首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
多肽PrP106-126对培养神经细胞朊蛋白基因表达的影响   总被引:1,自引:0,他引:1  
神经细胞是传染性海绵状脑病(transmissible spongiform encephalopathies, TSEs)的重要靶细胞,PrP106-126是研究TSEs致病机理的理想工具,对PrP106-126作用的培养神经细胞模型进行研究,有利于了解朊蛋白的功能和探讨TSEs的分子致病机制.本研究利用PrP106-126构建了大脑皮质和小脑颗粒神经元作用模型,对神经细胞的存活和朊蛋白基因的表达进行了研究.结果表明PrP106-126作用于培养神经细胞导致其存活率的显著下降;大脑皮质神经元经PrP 106-126处理后,与SCR处理组和对照组相比,基因表达的量明显下降,处理后的小脑颗粒神经元也有类似的情况出现,两者之间下降的幅度和时间不同.我们的研究结果为研究朊蛋白在TSEs发生中的作用和深入了解TSE的分子致病机制提供了基础数据.  相似文献   

2.
朊病毒病,即传染性海绵状脑病(transmissible spongiform encephalopathies, TSEs),是一类传染性、致死性神经退行性疾病。在朊病毒病的病理过程中,细胞正常朊蛋白PrP。转化为异常构象的PrP是至关重要的,但是PrP‘的正常生理功能仍不清楚。国外学者利用比较基因组学发现了-个新的朊蛋白相关蛋白-shadoo(Sho)。Sho与PrP。在氨基酸序列和细胞定位的相似性及主要在脑组织表达,使它成为-个非常值得研究的PrP相关蛋白。对Sho可能存在的与PrP。重叠的功能甚至直接相互作用的研究工作,将对今后揭示PrPc正常生理功能以及揭示Pfion病发病机制具有重要现实意义。  相似文献   

3.
朊病毒病,即传染性海绵状脑病(transmissible spongiform encephalopathies,TSEs),是一类致死性的神经退行性疾病,存在散发性、感染性和遗传性3种形式。在朊病毒病的病理过程中,细胞正常朊蛋白PrPc(cellular PrP)转化为异常构象的PrP^Sc(scrapie PrP)是至关重要的,但是朊病毒的增殖如何导致神经元凋亡仍不清楚。PrPc的胞内运输在朊病毒病中发挥重要作用,朊病毒感染后PrP^C转化为PrP^Sc,及遗传性朊病毒病中PrP突变可能影响PrP的生物合成、亚细胞定位及转运过程,通过干扰PrP^C的正常功能或产生毒性中间体而导致神经系统病变。现对近年来关于PrP胞内运输在朊病毒病中的作用进行综述。  相似文献   

4.
为进一步确定PrP蛋白与14-3-3蛋白是否发生分子间的相互作用并确定PrP蛋白与14-3-3蛋白相互作用的区域,利用免疫共沉淀、pull down和能量共振转移(FRET)实验检测PrP蛋白与人14-3-3蛋白是否发生分子间的相互作用及相互作用的部位。结果证明,PrP蛋白与人14-3-3蛋白在体外、组织水平及细胞水平均可以发生相互作用,且证实作用的部位在PrP蛋白的106-126位氨基酸。该结果为进一步研究14-3-3蛋白在Prion疾病中的影响及Prion疾病的发病机制奠定了一定基础。  相似文献   

5.
PrP^106-126和PrP^118-135分别对应于人PrP^c序列中106~126残基和118~135残基,两个肽段在试验中具备prpsc的部分病理特症,因此PrP^106-126和PrP^118-135就成为了研究PrP^Sc神经细胞毒性致病机制的合适的模型。  相似文献   

6.
孙鹏  宋娟  张瑾  宋芹芹  甘星  崔雨  高晨  博晓真  韩俊 《病毒学报》2012,28(4):414-417
本研究将PrP106-126多肽和HeLa细胞共孵育4h和8h,采用Hoechst染色分析发现PrP106-126诱导凋亡细胞细胞核出现不同程度的染色质浓集,固缩及碎裂的细胞凋亡征象。Western blotting检测发现PrP106-126诱导细胞中的多聚ADP核糖聚合酶(poly ADP-ribose polymerase,PARP)降解,提示PrP106-126通过caspase3途径引起细胞凋亡现象。PrP106-126诱导的细胞中14-3-3β在不同孵育时间也出现降解,而Real-time PCR检测14-3-3β mRNA未发生变化。本研究证明PrP106-126通过caspase3诱导HeLa细胞凋亡,并可导致抗凋亡蛋白14-3-3β的降解而加速凋亡的形成。  相似文献   

7.
朊粒蛋白PrP~(Sc)寡聚体的形成与跨膜毒性   总被引:1,自引:0,他引:1  
朊粒蛋白(prionprotein,PrP)传染致病机制一直是朊粒(prion)研究领域的焦点.由正常型朊粒蛋白(PrPC)向致病型朊粒蛋白(PrPSc)的转变是致病的关键步骤.本文综述了近年来PrPC向PrPSc转变的结构变化特征、PrPSc由单体形成寡聚体的组装机制、以及PrPSc寡聚体的跨膜机制与细胞毒性间的关系等方面的研究进展.  相似文献   

8.
为了进一步确定PrP蛋白与微管蛋白是否发生分子间相互作用以及PrP蛋白多肽链中与微管蛋白相互作用的区域,我们表达纯化了全长的PrP以及PrP蛋白缺失突变体,提取了兔脑组织中天然微管蛋白。利用pull-down及免疫共沉淀方法检测全长PrP及PrP蛋白缺失突变体与微管蛋白是否发生分子间相互作用。结果显示,全长His-PrP23-231能与微管蛋白发生体外相互作用,并首次证实了PrP与微管蛋白相互作用的区域位于PrP N端第23位至91位氨基酸。此研究为进一步研究PrP在神经细胞的主动转运机制以及Prion疾病的发病机制提供了一定的理论基础。  相似文献   

9.
Tau融合蛋白及其缺失突变体与朊蛋白的体外作用分析   总被引:1,自引:0,他引:1  
在部分朊病毒病(prion diseases)中,高度磷酸化的微管相关蛋白tau与朊蛋白(prion protein,PrP)发生共定位,tau蛋白可能在朊病毒病的病理机制中有重要作用. 本室已经证明二者可以发生分子间相互作用,本文进一步分析了tau蛋白与prion的体外相互作用及作用位点. 利用RT-PCR方法从人源细胞系SHSY5Y cDNA中扩增出微管相关蛋白tau全长cDNA序列,克隆至质粒pGEX-2T载体,在大肠杆菌中诱导表达融合蛋白GST-tau. 利用GST pull-down及免疫共沉淀方法检测全长tau蛋白与PrP23-231的分子间相互作用. 进一步表达tau 蛋白的各种缺失突变体,确定tau蛋白与PrP蛋白的相互作用位点. 结果表明,所表达的全长tau蛋白及各种缺失突变体均为可溶性蛋白,Western印迹结果显示,各种蛋白均能很好的被tau蛋白单抗识别. GST pull-down和免疫共沉淀实验均显示,原核表达的全长tau蛋白可与全长的PrP蛋白在体外发生相互作用,并确定相互作用位点位于tau蛋白的N端序列及中段的重复区. 上述结果为研究tau蛋白与PrP的相互作用在朊病毒病的发病机制中的意义提供了一定的理论基础.  相似文献   

10.
绵羊PRNP遗传多样性与抗病育种研究进展   总被引:5,自引:1,他引:4  
管峰  潘磊  石国庆  刘守仁  杨利国 《遗传》2009,31(2):137-141
朊蛋白(Prion protein, PrP)是近年来被确认的引起人畜共患病的新型病原体, 也是目前证明的具有自我复制和传播能力的蛋白质。PrP在多种动物体内表达并具有重要生理作用, 其空间结构改变被认为是可传播性海绵状脑病(Transmissible spongiform encephalopathies, TSEs)的根源, 研究发现朊蛋白编码基因(PRNP)遗传多样性与绵羊对瘙痒病的抗病性具有显著相关性。文章主要介绍了绵羊PRNP遗传多样性与痒病抗病性的关系以及PRNP遗传多样性对繁殖力和其他主要生产性能的影响等方面的研究成果, 旨在为绵羊抗病育种研究提供理论参考。  相似文献   

11.
12.
Prion Protein Peptide Neurotoxicity Can Be Mediated by Astrocytes   总被引:1,自引:0,他引:1  
A peptide based on amino acids 106-126 of the sequence of human prion protein (PrP106-126) is neurotoxic in culture. A role for astrocytes mediating PrP106-126 toxicity was investigated. The toxicity of PrP106-126 to cerebellar cell cultures was reduced by aminoadipate, a gliotoxin. Normally, PrP106-126 is not toxic to cultures containing neurones deficient in the cellular isoform of prion protein (PrPc). However, PrP106-126 was toxic to cerebellar cells derived from Prnp(0/0) mice (deficient in PrPc expression) when those cerebellar cells were cocultured with astrocytes. This toxicity was found to occur only in the presence of PrPc-positive astrocytes and to be mediated by glutamate. Furthermore, PrPc-positive astrocytes were shown to protect Prnp(0/0) cerebellar cells from glutamate toxicity. This effect could be inhibited by PrP106-126. PrP106-126 did not enhance the toxicity of glutamate to neurones directly. When cerebellar cells were cocultured with astrocytes, the neurones became dependent on astrocytes for protection from glutamate toxicity and expressed an increased sensitivity to glutamate. In such a system, the protective effects of astrocytes against glutamate toxicity to neurones were inhibited by PrP106-126, resulting in a greater reduction in neuronal survival than would have been caused by PrP106-126 when astrocytes were not present. This new model provides a possible mechanism by which the gliosis in prion disease may accelerate the neurodegeneration seen in the later stages of the disease.  相似文献   

13.
Prion diseases are infectious and fatal neurodegenerative diseases. The pathogenic agent is an abnormal prion protein aggregate. Microglial activation in the centre nervous system is a characteristic feature of prion disease. In this study, we examined the effect of PrP 106–126 on PrP mRNA gene expression in Mouse microglia cells BV-2 by real-time quantitative PCR. PrP mRNA expression level was found to be significantly increased after 18 h exposure of BV-2 cells to PrP 106–126, with 3-fold increase after 18 h and 4.5-fold increase after 24 h and BV-2 cells proliferating occurred correspondingly. Our results provide the first in vitro evidence of the increase of PrP mRNA levels in microglial cells exposed to PrP 106–126, and indicate that microglial cells might play a critical role in prion pathogenesis.  相似文献   

14.
Inherited prion diseases are linked to insertional and point mutations in the prion protein (PrP) gene, which favor conversion of PrP into a conformationally altered, pathogenic isoform. The cellular mechanism by which this process causes neurological dysfunction is unknown. Transgenic (Tg) (PG14) mice express a mouse PrP homolog of a nine-octapeptide insertion associated with an inherited prion disorder. These mice develop a progressive neurological syndrome characterized by ataxia and cerebellar atrophy due to synaptic degeneration in the molecular layer and massive apoptosis of granule neurons. To investigate the molecular events that may contribute to neurological dysfunction, we carried out a differential proteomic analysis of cerebella from Tg(PG14) mice at the preclinical, onset, and symptomatic phases of their neurological illness. 2-D maps of cerebellar proteins from Tg(PG14) mice were compared to those obtained from age-matched Tg(WT) mice that express wild-type PrP and remain healthy. Proteins whose levels were significantly modified in at least one stage of the Tg(PG14) disease were identified by PMF. Analysis detected a preclinical decrease of the calcium/calmodulin-dependent phosphatase calcineurin (CaN) in granule neurons, suggesting that dysregulation of CaN activity induced by mutant PrP may be responsible for the cerebellar dysfunction in Tg(PG14) mice.  相似文献   

15.
Prion diseases are progressive neurodegenerative diseases that are associated with the conversion of normal cellular prion protein (PrP(C)) to abnormal pathogenic prion protein (PrP(SC)) by conformational changes. Prion protein is a metal-binding protein that is suggested to be involved in metal homeostasis. We investigated here the effects of trace elements on the conformational changes and neurotoxicity of synthetic prion peptide (PrP106-126). PrP106-126 exhibited the formation of β-sheet structures and enhanced neurotoxicity during the aging process. The co-existence of Zn(2+) or Cu(2+) during aging inhibited β-sheet formation by PrP106-126 and attenuated its neurotoxicity on primary cultured rat hippocampal neurons. Although PrP106-126 formed amyloid-like fibrils as observed by atomic force microscopy, the height of the fibers was decreased in the presence of Zn(2+) or Cu(2+). Carnosine (β-alanyl histidine) significantly inhibited both the β-sheet formation and the neurotoxicity of PrP106-126. Our results suggested that Zn(2+) and Cu(2+) might be involved in the pathogenesis of prion diseases. It is also possible that carnosine might become a candidate for therapeutic treatments for prion diseases.  相似文献   

16.
Prion diseases are fatal neurodegenerative disorders characterized by the accumulation in the brain of an abnormally misfolded, protease-resistant, and beta-sheet rich pathogenic isoform (PrP(SC)) of the cellular prion protein (PrP(C)). In the present work, we were interested to study the mode of prion protein interaction with the membrane using the 106-126 peptide and small unilamellar lipid vesicles as model. As previously demonstrated, we showed by MTS assay that PrP 106-126 induces alterations in the human neuroblastoma SH-SY5Y cell line. We demonstrated for the first time by lipid-mixing assay and by the liposome vesicle leakage test that PrP 106-126, a non-tilted peptide, induces liposome fusion thus a potential cell membrane destabilization, as supported by membrane integrity assay (LDH). By circular dichroism (CD) analysis we showed that the fusogenic property of PrP 106-126 in the presence of liposome is associated with a predominantly beta-sheet structure. These data suggest that the fusogenic property associated with a predominant beta-sheet structure exhibited by the prion peptides contributes to the neurotoxicity of these peptides by destabilizing cellular membranes. The latter might be attached at the membrane surface in a parallel orientation as shown by molecular modeling.  相似文献   

17.
Prion diseases are characterised by severe neural lesions linked to the presence of an abnormal protease-resistant isoform of cellular prion protein (PrPc). The peptide PrP(106-126) is widely used as a model of neurotoxicity in prion diseases. Here, we examine in detail the intracellular signalling cascades induced by PrP(106-126) in cortical neurons and the participation of PrPc. We show that PrP(106-126) induces the activation of subsets of intracellular kinases (e.g., ERK1/2), early growth response 1 synthesis and induces caspase-3 activity, all of which are mediated by nicotinamide adenine dinucleotide phosphate hydrogen-oxidase activity and oxidative stress. However, cells lacking PrPc are similarly affected after peptide exposure, and this questions the involvement of PrPc in these effects.  相似文献   

18.
Kouadir M  Yang L  Tan R  Shi F  Lu Y  Zhang S  Yin X  Zhou X  Zhao D 《PloS one》2012,7(1):e30756
Microglial activation is a characteristic feature of the pathogenesis of prion diseases. The molecular mechanisms that underlie prion-induced microglial activation are not very well understood. In the present study, we investigated the role of the class B scavenger receptor CD36 in microglial activation induced by neurotoxic prion protein (PrP) fragment 106-126 (PrP(106-126)). We first examined the time course of CD36 mRNA expression upon exposure to PrP(106-126) in BV2 microglia. We then analyzed different parameters of microglial activation in PrP(106-126)-treated cells in the presence or not of anti-CD36 monoclonal antibody (mAb). The cells were first incubated for 1 h with CD36 monoclonal antibody to block the CD36 receptor, and were then treated with neurotoxic prion peptides PrP(106-126). The results showed that PrP(106-126) treatment led to a rapid yet transitory increase in the mRNA expression of CD36, upregulated mRNA and protein levels of proinflammatory cytokines (IL-1β, IL-6 and TNF-α), increased iNOS expression and nitric oxide (NO) production, stimulated the activation of NF-κB and caspase-1, and elevated Fyn activity. The blockade of CD36 had no effect on PrP(106-126)-stimulated NF-κB activation and TNF-α protein release, abrogated the PrP(106-126)-induced iNOS stimulation, downregulated IL-1β and IL-6 expression at both mRNA and protein levels as well as TNF-α mRNA expression, decreased NO production and Fyn phosphorylation, reduced caspase-1 cleavage induced by moderate PrP(106-126)-treatment, but had no effect on caspase-1 activation after treatment with a high concentration of PrP(106-126). Together, these results suggest that CD36 is involved in PrP(106-126)-induced microglial activation and that the participation of CD36 in the interaction between PrP(106-126) and microglia may be mediated by Src tyrosine kinases. Our findings provide new insights into the mechanisms underlying the activation of microglia by neurotoxic prion peptides and open perspectives for new therapeutic strategies for prion diseases by modulation of CD36 signaling.  相似文献   

19.
20.

Background

A key pathogenic role in prion diseases was proposed for a cytosolic form of the prion protein (PrP). However, it is not clear how cytosolic PrP localization influences neuronal viability, with either cytotoxic or anti-apoptotic effects reported in different studies. The cellular mechanism by which PrP is delivered to the cytosol of neurons is also debated, and either retrograde transport from the endoplasmic reticulum or inefficient translocation during biosynthesis has been proposed. We investigated cytosolic PrP biogenesis and effect on cell viability in primary neuronal cultures from different mouse brain regions.

Principal Findings

Mild proteasome inhibition induced accumulation of an untranslocated form of cytosolic PrP in cortical and hippocampal cells, but not in cerebellar granules. A cyclopeptolide that interferes with the correct insertion of the PrP signal sequence into the translocon increased the amount of untranslocated PrP in cortical and hippocampal cells, and induced its synthesis in cerebellar neurons. Untranslocated PrP boosted the resistance of cortical and hippocampal neurons to apoptotic insults but had no effect on cerebellar cells.

Significance

These results indicate cell type-dependent differences in the efficiency of PrP translocation, and argue that cytosolic PrP targeting might serve a physiological neuroprotective function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号