首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 843 毫秒
1.
Genetically modified mice with spontaneous development of mammary carcinoma provide a powerful tool to study the efficacy of tumor vaccines, since they mimic breast cancer development in humans. We used a transgenic murine model expressing polyomavirus middle T oncogene and mucin 1 tumor-associated Ag to determine the preventive effect of a dendritic/tumor fusion cell vaccine. The MMT (a transgenic murine model) mice developed mammary carcinoma between the ages of 65-108 days with 100% penetrance. No spontaneous CTL were detected. However, prophylactic vaccination of MMT mice with dendritic/tumor fusion cells induced polyclonal CTL activity against spontaneous mammary carcinoma cells and rendered 57-61% of the mice free of the disease at the end of experiment (180 days). Furthermore, the level of CTL activity was maintained with multiple vaccinations. The antitumor immunity induced by vaccination with dendritic/tumor fusion cells reacted differently to injected tumor cells and autochthonous tumor. Whereas the injected tumor cells were rejected, the autochthonous tumor evaded the attack and was allowed to grow. Collectively these results indicate that prophylactic vaccination with dendritic/tumor fusion cells confers sufficient antitumor immunity to counter the tumorigenesis of potent oncogenic products. The findings in the present study are highly relevant to cancers in humans.  相似文献   

2.
3.
To assess the efficacy of self versus heterologous ErbB-2 vaccines, the reactivity to human and rat ErbB-2 (Her-2 and neu, respectively) DNA vaccines were tested in normal, Her-2 or neu transgenic mice. When immunized with either Her-2 or neu DNA, normal BALB/c and C57BL/6 mice produced cross-reactive T cells, but only antigen specific antibodies. In Her-2 Tg mice, weak to no anti-Her-2 response was induced by either self Her-2 or heterologous neu DNA, demonstrating profound tolerance to Her-2 and the inability to induce anti-Her-2 immunity with either vaccine. In NeuT mice, vaccination with self neu but not heterologous Her-2 DNA induced anti-neu antibodies and delayed spontaneous tumorigenesis. Both neu and Her-2 DNA induced anti-neu T cell response, but depletion of CD8 T cells did not change the delay in tumorigenesis. Therefore, in NeuT mice, both self and heterologous DNA activated anti-neu T cells, although T cell response did not reach sufficient level to suppress spontaneous tumorigenesis. Rather, induction of anti-neu antibodies by self neu DNA is associated with the delay in spontaneous tumor growth. Overall, NeuT mice were more responsive to DNA vaccination than Her-2 Tg mice and this may be associated with the continuous production of neu by the 10 mammary glands undergoing tumor progression.  相似文献   

4.
Listeria monocytogenes-based vaccines for HER-2/neu are capable of breaking tolerance in FVB/N rat HER-2/neu transgenic mice. The growth of implanted NT-2 tumors, derived from a spontaneously occurring tumor in the FVB/N HER-2/neu transgenic mouse, was significantly slower in these mice following vaccination with a series of L. monocytogenes-based vaccines for HER-2/neu. Mechanisms of T cell tolerance that exist in these transgenic mice include the absence of functional high avidity anti-HER-2/neu CD8+ T cells and the presence of CD4+CD25+ regulatory T cells. The in vivo depletion of these regulatory T cells resulted in the slowing in growth of tumors even without the treatment of mice with an anti-HER-2/neu vaccine. The average avidities of responsive CD8+ T cells to six of the nine epitopes in HER-2/neu we examined, four of which were identified in this study, are shown here to be of a lower average avidity in the transgenic mice versus wild type FVB/N mice. In contrast, the average avidity of CD8+ T cells to three epitopes that showed the lowest avidity in the wild-type mice did not differ between wild type and transgenic mice. This study demonstrates the ability of L. monocytogenes-based vaccines to impact upon tolerance to HER-2/neu in FVB/N HER-2/neu transgenic mice and further defines some of the aspects of tolerance in these mice.  相似文献   

5.
We reported previously that pigeon cytochrome c-derived peptides (Pan-IA), which bind broad ranges of MHC class II molecules efficiently, activate T helper (Th) function in mice. In an experimental model, Pan-IA DNA vaccines augmented antitumor immunity in tumor antigen-immunized mice. To elicit more potent antitumor immunity and to eradicate tumors in a therapeutic setting, Pan-IA-loaded dendritic cells (DCs) were inoculated in combination with vaccines including ovalbumin (OVA) antigen DNA in tumor-bearing mice. Seventy percent of the immunized mice survived tumor-free for at least 4 months after treatment. In contrast, mice vaccinated with OVA DNA, either with or without naïve DCs, did not eliminate the tumors and died within 5 weeks. Only in mice vaccinated with OVA DNA and Pan-IA-loaded DCs were both cytotoxic and helper responses specific for OVA induced at the spleen and tumor sites as well as at the vaccination sites. Furthermore, accumulation of OVA-specific CD4+ and CD8+ T lymphocytes and interferon-gamma-mediated anti-angiogenesis were observed in the tumors of these mice. Thus, the combined vaccination primed both tumor-specific cytotoxicity and helper immunity resulting in augmented tumor lysis ability and anti-angiogenic effects. This is the first report to show that most established tumors were successfully eradicated by collaboration of potent antitumor immunity and anti-angiogenic effects by vaccination with tumor antigens and helper-activating analogs. This novel vaccination strategy is broadly applicable, regardless of identifying helper epitopes in target molecules, and contributes to the development of therapeutic cancer vaccines.  相似文献   

6.
Immunization with dendritic cells (DCs) using various Ag-loading approaches has shown promising results in tumor-specific immunotherapy and immunoprevention. Fused cells (FCs) that are generated from DCs and tumor cells are one of effective cancer vaccines because both known and unknown tumor Ags are presented on the FCs and recognized by T cells. In this study, we attempted to augment antitumor immunity by the combination of DC-tumor FC vaccination with immunostimulatory oligodeoxynucleotides containing CpG motif (CpG ODN). Murine DCs were fused with syngeneic tumor cells ex vivo using inactivated hemagglutinating virus of Japan (Sendai virus). Mice were intradermally (i.d.) immunized with FCs and/or CpG ODN. Coadministration of CpG ODN enhanced the phenotypical maturation of FCs and unfused DCs, and the production of Th1 cytokines, such as IFN-gamma and IL-12, leading to the induction of tumor-specific CTLs without falling into T cell anergy. In addition, immunization with FCs + CpG ODN provided significant protection against lethal s.c. tumor challenge and spontaneous lung metastasis compared with that with either FCs or CpG ODN alone. Furthermore, among mice that rejected tumor challenge, the mice immunized with FCs + CpG ODN, but not the mice immunized with FCs or CpG ODN alone, completely rejected tumor rechallenge, indicating that CpG ODN provided long-term maintenance of tumor-specific immunity induced by FCs. Thus, the combination of DC-tumor FCs and CpG ODN is an effective and feasible cancer vaccine to prevent the generation and recurrence of cancers.  相似文献   

7.
We have found previously that human lung cancers potently induce T lymphocyte IL-10 production in vitro. To assess the impact of enhanced T cell-derived IL-10 on antitumor immunity in vivo, we utilized transgenic mice expressing IL-10 under the control of the IL-2 promoter. We have shown previously that Lewis lung carcinoma cells (3LL) have more aggressive growth potential in IL-10 transgenic mice compared with control littermates. In this study, we show that transfer of T cells from IL-10 transgenic mice to control littermates transferred the IL-10 immunosuppressive effect and led to enhanced 3LL tumor growth. In addition to changes in T cell-mediated immunity, professional APC from IL-10 transgenic mice were found to have significantly suppressed capacity to induce MHC alloreactivity, CTL responses, and IL-12 production. Tumor Ag-pulsed dendritic cells from IL-10 transgenic mice also failed to generate antitumor reactivity. These results suggest that increased levels of T cell-derived IL-10 severely impair antitumor immunity in vivo, due to defects in both T cell and APC function.  相似文献   

8.
9.
The history of immunizing animals with fetal tissues to generate an antitumor response dates back a century ago. Subsequent reports supported the idea that vaccination with embryonic materials could generate cancer-specific immunity and protect animals from transplantable and chemically induced tumors. In our study, we found C57 BL/6 mice vaccinated with embryonic stem cells (ESCs) received obvious antitumor immunity, which protected them from the formation and development of lung cancer. Furthermore, we investigated the antitumor effects of administration of ESCs in mice with minor and/or heavy tumor load. The tumor growth was monitored, the proliferation of lymphocytes and secretion of cytokines were examined, and finally the tissue sections were approached by immunohistochemical and apoptosis staining. The results suggested that mice injected with ESCs received obvious tumor inhibition and retardation due to significant lymphocyte proliferation and cytokine secretion, which help to rebuild the host’s immunity against cancer to some extent and comprise the main part of antitumor immunity. Moreover, mice with minor tumor load received stronger antitumor effect compared with mice with heavy tumor load, may be due to relatively intact immune system. Thus, besides their function as prophylactic vaccines, administration of ESCs could be a potential treatment for cancer, which obviously prevent and control the proliferation and development of malignant tumors.  相似文献   

10.
Dietary phytosterol supplements are readily available to consumers since they effectively reduce plasma low-density lipoprotein cholesterol. Several studies on cell cultures and xenograft mouse models suggest that dietary phytosterols may also exert protective effects against common cancers. We examined the effects of a dietary phytosterol supplement on tumor onset and progression using the well-characterized mouse mammary tumor virus polyoma virus middle T antigen transgenic mouse model of inherited breast cancer. Both the development of mammary hyperplastic lesions (at age 4 weeks) and total tumor burden (at age 13 weeks) were reduced after dietary phytosterol supplementation in female mice fed a high-fat, high-cholesterol diet. A blind, detailed histopathologic examination of the mammary glands (at age 8 weeks) also revealed the presence of less-advanced lesions in phytosterol-fed mice. This protective effect was not observed when the mice were fed a low-fat, low-cholesterol diet. Phytosterol supplementation was effective in preventing lipoprotein oxidation in mice fed the high-fat diet, a property that may explain — at least in part — their anticancer effects since lipoprotein oxidation/inflammation has been shown to be critical for tumor growth. In summary, our study provides preclinical proof of the concept that dietary phytosterols could prevent the tumor growth associated with fat-rich diet consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号