首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Allelopathy and exotic plant invasion   总被引:52,自引:0,他引:52  
The primary hypothesis for the astonishing success of many exotics as community invaders relative to their importance in their native communities is that they have escaped the natural enemies that control their population growth – the `natural enemies hypothesis'. However, the frequent failure of introduced biocontrols, weak consumer effects on the growth and reproduction of some invaders, and the lack of consistent strong top-down regulation in many natural ecological systems indicate that other mechanisms must be involved in the success of some exotic plants. One mechanism may be the release by the invader of chemical compounds that have harmful effects on the members of the recipient plant community (i.e., allelopathy). Here, we provide an abbreviated compilation of evidence for allelopathy in general, present a detailed case study for Centaurea diffusa, an invasive Eurasian forb in western North America, and review general evidence for allelopathic effects of invasive plants in native communities. The primary rationale for considering allelopathy as a mechanism for the success of invaders is based on two premises. First, invaders often establish virtual monocultures where diverse communities once flourished, a phenomenon unusual in natural communities. Second, allelopathy may be more important in recipient than in origin communities because the former are more likely to be naïve to the chemicals possessed by newly arrived species. Indeed, results from experiments on C. diffusa suggest that this invader produces chemicals that long-term and familiar Eurasian neighbors have adapted to, but that C. diffusa's new North American neighbors have not. A large number of early studies demonstrated strong potential allelopathic effects of exotic invasive plants; however, most of this work rests on controversial methodology. Nevertheless, during the last 15 years, methodological approaches have improved. Allelopathic effects have been tested on native species, allelochemicals have been tested in varying resource conditions, models have been used to estimate comparisons of resource and allelopathic effects, and experimental techniques have been used to ameliorate chemical effects. We do not recommend allelopathy as a `unifying theory' for plant interactions, nor do we espouse the view that allelopathy is the dominant way that plants interact, but we argue that non-resource mechanisms should be returned to the discussion table as a potential mechanism for explaining the remarkable success of some invasive species. Ecologists should consider the possibility that resource and non-resource mechanisms may work simultaneously, but vary in their relative importance depending on the ecological context in which they are studied. One such context might be exotic plant invasion.  相似文献   

2.
The allelopathy of a serious weed, barnyard grass (Echinochloa crus-galli L.), was investigated. Root exudates of young barnyard grass showed allelopathic effects and plant-selective activity and inhibited root elongation of all plants tested. With respect to shoot growth, the exudates did not show inhibition of barnyard grass only. The allelopathic substance was isolated and identified as p-hydroxymandelic acid by NMR. p-Hydroxymandelic acid strongly inhibited shoot growth and root elongation of all plants tested. The effects of three congeners of p-hydroxymandelic acid were tested on rice shoot growth. In the biological activity exhibited in rice, shoot growth was related to the hydroxyl groups. Received October 7, 1998; accepted March 29, 1999  相似文献   

3.
Background and Aims Allelopathy may drive invasions of some exotic plants, although empirical evidence for this theory remains largely inconclusive. This could be related to the large intraspecific variability of chemically mediated plant–plant interactions, which is poorly studied. This study addressed intraspecific variability in allelopathy of Heracleum mantegazzianum (giant hogweed), an invasive species with a considerable negative impact on native communities and ecosystems.Methods Bioassays were carried out to test the alleopathic effects of H. mantegazzianum root exudates on germination of Arabidopsis thaliana and Plantago lanceolata. Populations of H. mantegazzianum from the Czech Republic were sampled and variation in the phytotoxic effects of the exudates was partitioned between areas, populations within areas, and maternal lines. The composition of the root exudates was determined by metabolic profiling using ultra-high-performance liquid chromatography with time-of-flight mass spectrometry, and the relationships between the metabolic profiles and the effects observed in the bioassays were tested using orthogonal partial least-squares analysis.Key Results Variance partitioning indicated that the highest variance in phytotoxic effects was within populations. The inhibition of germination observed in the bioassay for the co-occurring native species P. lanceolata could be predicted by the metabolic profiles of the root exudates of particular maternal lines. Fifteen compounds associated with this inhibition were tentatively identified.Conclusions The results present strong evidence that intraspecific variability needs to be considered in research on allelopathy, and suggest that metabolic profiling provides an efficient tool for studying chemically mediated plant–plant interactions whenever unknown metabolites are involved.  相似文献   

4.
An experimental technique was used to separate and evaluate the magnitude of allelopathic interference relative to resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup (Empetraceae). To test for resource competition and allelopathy, respectively, Scots pine (Pinus sylvestris L.) seedlings were grown in both the greenhouse and in the field over a 3 year period, in four different treatments within E. hermaphroditum vegetation: (1) PVC tubes were used to reduce effects of interspecific below-ground competition; (2) activated carbon was spread on the soil to adsorb toxins leached from E. hermaphroditum litter and green leaves, thus reducing effects of allelopathic interference; (3) E. hermaphroditum vegetation was left untreated to evaluate inhibiting effects when both allelopathy and resource competition were present; (4) PVC tubes, placed in E. hermaphroditum vegetation spread with activated carbon were used to determine growth of seedlings when both allelopathy and resource competition were reduced. Scots pine seedlings grown in untreated vegetation (with both root competition and allelopathy present) had the lowest shoot length and dry weight; seedlings with both allelopathy and root competition reduced (activated carbon in tube) were the largest. Reducing either root competition alone (tube treatment) or allelopathy alone (carbon treatment) produced seedlings of intermediate size, but reduced competition had a greater effect than reduced allelopathy (although, in the greenhouse, significantly so only for root biomass). In the greenhouse experiment, biomass production of seedlings grown free of both interactions (carbon in tube) was greater than the simple sum of the growth response to the individual interactions (tube treatment and carbon treatment, respectively). Larger shoot:root ratios were also found when pine seedlings were grown without tubes (i.e. when resource competition was occurring). In the field, the removal of allelopathy (carbon treatments) increased shoot:root ratio when compared to the removal of resource competition. The study showed that two different interference mechanisms of E. hermaphroditum can be separated and quantified, and that below-ground competition and allelopathy by E. hermaphroditum are both important factors retarding growth of Scots pine.  相似文献   

5.
Two field experiments were conducted using three dominant perennial species of the Chihuahuan Desert: Hilaria mutica (a tussock grass), Larrea tridentata (a microphyllous shrub) and Opuntia rastrera (a flat-stemmed succulent cactus). Two hypotheses concerning competition in arid plant communities were tested. (1) Marked resource partitioning with no interspecific competition could be expected since the three species belong to different life-forms, and that plant growth in deserts is basically limited by harsh environmental conditions. (2) Alternatively, resource scarcity (particularly water) will result in strong plant competition. In a 1-year removal experiment, water status and plant growth of the three species were monitored in twelve 10 m × 10 m plots randomized in three blocks and assigned to the following treatments: (a) removal of all species, except H. mutica; (b) removal of all species, except L. tridentata; (c) removal of all species, except O. rastrera, and (d) control without any manipulation. In a watering experiment, under two neighbourhood conditions (growing isolated or in associations of plants of the three species in plots of 20 m2), the water status of the three species and the growth of H.mutica and L.tridentata were studied for 32 days after an irrigation equivalent to 30 mm of rain, similar to a strong storm event at the site. In the removal experiment, where plants were free to capture water, no evidence of competition was observed. However, during the watering experiment, in which water was forced into the soil, competitive effects were observed. Associated individuals of L. tridentata had lower xylem water potentials and osmotic potentials (OPs) and produced shorter twigs and less leaves and nodes. Although less pronounced, neighbours also had a negative effect on the OP in O. rastrera. According to these results, the intensity of the interspecific competition for water seems to depend on the level of resource availability in the soil. Thus, the validity of the two hypotheses tested in this study also depends on the level of resources. Competition could be absent or very low in years of low precipitation, as in the year of this study (173 mm against a 25-year average of 264 mm). However, when soil water availability is high, e.g. following heavy rain, the negative interactions between species could be more intense. Received: 3 October 1997 / Accepted: 23 March 1998  相似文献   

6.
The relative importance of allelopathy and resource competition in plant-plant interactions has been vigorously debated but seldom tested. We used activated carbon to manipulate the effects of root exudates of Centaurea maculosa, a noxious weed in much of western North America, on root elongation rates and growth of the native bunchgrass Festuca idahoensis in order to investigate the relative importance of allelopathy in the total interference of Centaurea. In root observation chambers, Festuca root elongation rates decreased to ᅢ% of the control, beginning 4 days before contacting Centaurea roots in silica sand. However, when activated carbon, which has a high affinity for adsorbing to organic compounds, was added to the sand the effects of Centaurea roots on Festuca root elongation were reduced. In other experiments, Festuca plants were 50% smaller when grown with Centaurea than with conspecifics in pure silica sand. However, Festuca grown with Centaurea in mixtures of sand and activated carbon were 85% larger than Festuca grown with Centaurea in silica sand without carbon. These results suggest that allelopathy accounts for a substantial proportion of the total interference of Centaurea on Festuca, shifting the balance of competition in favor of Centaurea. However, Centaurea outperformed Festuca even in the presence of activated carbon, demonstrating the importance of the combined roles of resource competition and allelopathy.  相似文献   

7.
Biotic interactions in the plankton can be both complex and dynamic. Competition among phytoplankton is often chemically mediated, but no studies have considered whether allelopathic compounds are modified by biotic interactions. Here, we show that compounds exuded during Karenia brevis blooms were allelopathic to the cosmopolitan diatom Skeletonema costatum, but that bloom allelopathy varied dramatically among collections and years. We investigated several possible causes of this variability and found that neither bloom density nor concentrations of water-borne brevetoxins correlated with allelopathic potency. However, when we directly tested whether the presence of competing phytoplankton influenced bloom allelopathy, we found that S. costatum reduced the growth-inhibiting effects of bloom exudates, suggesting that S. costatum has a mechanism for undermining K. brevis allelopathy. Additional laboratory experiments indicated that inducible changes to K. brevis allelopathy were restricted to two diatoms among five sensitive phytoplankton species, whereas five other species were constitutively resistant to K. brevis allelopathy. Our results suggest that competitors differ in their responses to phytoplankton allelopathy, with S. costatum exhibiting a previously undescribed method of resistance that may influence community structure and alter bloom dynamics.  相似文献   

8.
Activated carbon has become a widely used tool to investigate root-mediated allelopathy of plants, especially in plant invasion biology, because it adsorbs and thereby neutralizes root exudates. Allelopathy has been a controversially debated phenomenon for years, which revived in plant invasion biology as one possible reason for the success of invasive plants. Noxious plant exudates may harm other plants and provide an advantage to the allelopathic plant. However, root exudates are not always toxic, but may stimulate the microbial community and change nutrient availability in the rhizosphere. In a greenhouse experiment, we investigated the interacting effects of activated carbon, arbuscular mycorrhiza and plant competition between the invasive Senecio inaequidens and the native Artemisia vulgaris. Furthermore, we tested whether activated carbon showed any undesired effects by directly affecting mycorrhiza or soil chemistry. Contrary to the expectation, S. inaequidens was a weak competitor and we could not support the idea that allelopathy was involved in the competition. Activated carbon led to a considerable increase in the aboveground biomass production and reduced the infection with arbuscular mycorrhiza of both plant species. We expected that arbuscular mycorrhiza promotes plant growth by increasing nutrient availability, but we found the contrary when activated carbon was added. Chemical analyses of the substrate showed, that adding activated carbon resulted in a strong increase in plant available phosphate and in a decrease of the Corganic/Ntotal ratio, both of which suggest stimulated microbial activity. Thus, activated carbon not only reduced potential allelopathic effects, but substantially changed the chemistry of the substrate. These results show that activated carbon should be handled with great care in ecological experiments on allelopathy because of possible confounding effects on the soil community.  相似文献   

9.
Global models project impending climate changes that could significantly alter plant species composition in ecosystems. Climate manipulation experiments provide an opportunity to investigate such effects. Here we describe and apply a method for extracting the age‐detrended growth rate of sagebrush (Artemisia tridentata Nutt.) and show that experimental ecosystem warming enhances the growth rate of this shrub. Snowmelt date, not soil temperature or moisture, is demonstrated to be the dominant climate variable controlling the observed effect. Our findings suggest that global climate change will result in increased growth and range expansion of sagebrush near northern or high‐elevation range boundaries in the Western United States.  相似文献   

10.
Allelopathic interactions between plants and other organisms have been recognized by scientists worldwide because they offer alternative uses in agriculture, such as decreasing our reliance on synthetic herbicides, insecticides, and nematicides for disease and insect control. The recognition of the role that allelopathy can have in producing optimum crop yields is of fundamental importance. Despite much optimism and some progress in unravelling the complexities of biochemical interactions between species, a firm foundation for the scientific rationale of the existence and function of the allelopathic phenomenon has not been developed. Allelopathic chemicals are primarily secondary products of plant metabolism which have been an enigma to plant scientists; however, they undergo a variety of reactions with plant, insect and animal species that inhibit or stimulate their growth and development. Examples of some allelochemicals and their basis of molecular and biological action are shown: interaction between the unicorn plant (Proboscidea louisianica L.) and cotton (Gossypium hirsutum L.); diterpenoid alkaloids (fromDelphinium ajacis L.) as allelochemicals; substances that occur in wheat (Tritcum aestivum) and wheat soil that cause autotoxic effects; alfalfa (Medicago sativa L.) root saponins as allelochemicals; humic acids from wheat soil as allelochemicals; and structure-function of flavonols serving as allelochemicals in chloroplast-mediated electron transport and phosphorylation. This paper concludes with a discussion of some frontier areas of research in allelopathy.  相似文献   

11.
以大白菜、萝卜、番茄和黄瓜种子为受体,采用实验室培养皿种子发芽生物测试法研究了黄瓜种子浸提液、种子萌发、胚根和芽苗分泌物、芽苗腐解物和芽苗浸提液的化感效应。结果表明:(1)黄瓜种子浸提液对大白菜、萝卜、番茄和黄瓜种子萌发均有化感抑制作用,即黄瓜种子内含有某些化感抑制物质。(2)在水浸提过的黄瓜种子萌发过程中,它不仅对其近邻套种的大白菜、萝卜和番茄种子萌发产生化感抑制作用,而且其胚根和芽苗分泌物对后茬播种的4种蔬菜种子发芽也表现出不同程度的化感抑制作用;黄瓜芽苗腐解物和芽苗水浸提液也对各受体蔬菜种子发芽与生长产生不同程度的化感抑制作用,且随着腐解芽苗量的增加或浸提液浓度的升高,各受体蔬菜种子的发芽指标值、化感效应指数值和综合效应值随之降低。(3)黄瓜种子浸提液及芽苗各器官的化感物质对黄瓜种子的萌发与生长产生了自毒作用,且黄瓜芽苗腐解物、芽苗浸提液、胚根及芽苗分泌物对受体黄瓜的自毒作用均为最大。研究发现,黄瓜种子浸提液、种子萌发时期以及芽苗各器官的化感物质主要是通过抑制受体胚根的生长而起化感抑制作用,即受体蔬菜种子胚根对化感效应最为敏感;因黄瓜种子及萌发期释放化感物质的途径有所不同,导致受体大白菜、萝卜、黄瓜和番茄的化感响应也不相同;在黄瓜种子萌发和芽苗生长的早期,化感物质即开始在芽苗体内进行合成与积累,一部分可通过胚根和芽苗分泌途径释放到环境中,另一部分可通过芽苗腐解途径释放化感物质,并对受体蔬菜种子萌发与生长表现出较强的化感抑制作用。  相似文献   

12.
Abstract.  1. Recent studies have shown that plant–plant interaction via chemicals (allelopathy) can affect insects. Here the effects on aphid acceptance of barley after exposure to volatiles and root exudates from two common weeds, the thistles Cirsium arvense and Cirsium vulgare , were investigated.
2. Settling by bird cherry-oat aphid, Rhopalosiphum padi , was significantly reduced on barley plants that had been exposed to volatiles from Cirsium species for 5 days. Settling by Sitobion avenae was also reduced on Cirsium -exposed plants, whereas settling by Metopolophium dirhodum was not.
3. In olfactometer tests, Cirsium -exposed barley was significantly less attractive to R. padi than was unexposed barley, indicating that exposure causes a change in the volatile profile of barley.
4. Exposure of barley to root exudates from Cirsium species had no effect on R. padi settling.
5. The results lend weight to the theory that the effects of plant–plant allelopathy can extend to higher trophic levels.  相似文献   

13.
Cylindrospermopsis raciborskii (Wo?osz.) Seenayya et Subba Raju is a planktonic filamentous cyanobacterium whose sudden worldwide proliferation and ability to produce toxins are a reason for concern. In this paper, we suggest that its ecological dominance might be explained by antagonistic interaction with other phytoplankton species due to production of allelopathic metabolites. To test this hypothesis, experiments were run with exudates of natural phytoplankton and C. raciborskii strains isolated from Lagoa Santa, a small natural lake in southeastern Brazil, where this species has become dominant in recent years. The exudates were added to different algal species obtained from the same environment and maintained in culture. After 24 h incubation, PAM fluorometry was used to compare control and treatment photosynthetic responses (relative electron transport rate) to the dissolved extracellular products. Results indicate that most of the target species were sensitive to C. raciborskii exudates, which showed strong inhibitory effects on their photosynthetic activities. These results provide evidence that allelopathy may offer a competitive benefit to C. raciborskii and contribute to its stable dominance in Lagoa Santa. A potential allelopathic advantage could also help to explain the geographic expansion of this species at midlatitudes.  相似文献   

14.
A relatively small subset of exotic plant species competitively exclude their neighbors in invaded “recipient” communities but coexist with neighbors in their native habitat. Allelopathy has been argued as one of the mechanisms by which such exotics may become successful invaders. Three approaches have been used to examine allelopathy as a mechanism for invasion. The traditional approach examines exotic invasives in the same way that other native plants also suspected of allelopathic activities are studied. In this approach dose, fate, and replenishment of chemicals can provide powerful evidence for allelopathic processes. The bio-geographical approach often does not provide as much mechanistic evidence for allelopathy, but comparing the allelopathic effects of exotic invasives on species from their native and invaded communities yields stronger evidence than the traditional approach for whether or not allelopathy actually contributes to invasive success. The congeneric, or phylogenetic, approach involves comparative studies of exotic species with natives in the same genus or that are as closely related as possible. Congeneric approaches are limited in inference and have been used to study the role of natural enemies in exotic invasion, but this approach has not been widely used to study allelopathy and invasion. We discuss these three approaches and present a data set for congeneric Lantana and Prosopis to illustrate how the congeneric approach can be used, and use Centaurea maculosa and (±)-catechin to demonstrate experimentally how traditional and bio-geographic approaches can be integrated to shed light on allelopathy in exotic plant invasions.  相似文献   

15.
Question: How do patterns in colonization and patch expansion of an invasive woody plant (Larrea tridentata, Zygo‐phyllaceae) differ between two grassland ecosystems at a biome transition zone? Location: Semi‐arid/arid transition zone in central New Mexico. Methods: Frequency of occurrence, height, and surface area of saplings (n= 134) and patches of adult plants (n= 247) of the invasive shrub, L. tridentata, were measured within a mosaic of ecosystems dominated either by the Chihuahuan Desert species, Bouteloua eriopoda (Poaceae), or the shortgrass steppe species, B. gracilis, located within 1 km of the L. tridentata‐dominated ecosystem. Distances between L. tridentata patches and patch area were used to estimate connectivity as a measure of propagule pressure. Sapling age (estimated from height using previously established relationships) and distance to the L. tridentata‐dominated ecosystem was used to evaluate patterns in dispersal. Cover by species or functional group inside each L. tridentata patch was compared with surrounding vegetation to estimate changes in species composition with patch expansion. Results: L. tridentata saplings (< 1%) and adult patches (15%) occurred less frequently in B. gracilis‐dominated ecosystems than expected based on areal extent of this ecosystem type. Propagule pressure did not differ with distance from the core ecosystem dominated by L. tridentata. Evidence for both local and long‐distance dispersal events was found. Similar relationships between number of plants and patch area in both grassland types indicate similar patterns in patch expansion. Cover of perennial forbs was higher and cover of dominant grasses was lower in L. tridentata patches compared with the surrounding vegetation for both ecosystem types. Conclusions Spatial variation in L. tridentata saplings and patches at this biome transition zone is related to the different susceptibilities to invasion by two grassland ecosystems. The persistence of grasslands at this site despite region‐wide expansion by L. tridentata may be related to the spatial distribution of B. gracilis‐dominated ecosystems that resist or deter invasion by this woody plant.  相似文献   

16.
Marine bacteria rely on phytoplankton exudates as carbon sources (DOCp). Yet, it is unclear to what extent phytoplankton exudates also provide nutrients such as phytoplankton-derived N and P (DONp, DOPp). We address these questions by mesocosm exudate addition experiments with spent media from the ubiquitous pico-cyanobacterium Prochlorococcus to bacterial communities in contrasting ecosystems in the Eastern Mediterranean – a coastal and an open-ocean, oligotrophic station with and without on-top additions of inorganic nutrients. Inorganic nutrient addition did not lower the incorporation of exudate DONp, nor did it reduce alkaline phosphatase activity, suggesting that bacterial communities are able to exclusively cover their nitrogen and phosphorus demands with organic forms provided by phytoplankton exudates. Approximately half of the cells in each ecosystem took up detectable amounts of Prochlorococcus-derived C and N, yet based on 16S rRNA sequencing different bacterial genera were responsible for the observed exudate utilization patterns. In the coastal community, several phylotypes of Aureimarina, Psychrosphaera and Glaciecola responded positively to the addition of phytoplankton exudates, whereas phylotypes of Pseudoalteromonas increased and dominated the open-ocean communities. Together, our results strongly indicate that phytoplankton exudates provide coastal and open-ocean bacterial communities with organic carbon, nitrogen and phosphorus, and that phytoplankton exudate serve a full-fledged meal for the accompanying bacterial community in the nutrient-poor eastern Mediterranean.  相似文献   

17.
Summary This study established the preferences of shrubsteppe granivores among seeds of 6 common sagebrushsteppe plants and related the preferences observed to physical and nutritional attributes of the seeds. Seeds of big sagebrush (Artemisia tridentata), cheatgrass (Bromus tectorum), Indian ricegrass (Oryzopsis hymenoides), western wheatgrass (Pascopyrum smithii), bitterbrush (Purshia tridentata) and green needlegrass (Stipa viridula) were placed in groups of petri dishes designed such that seed removal could be ascribed to either diurnal vertebrates, nocturnal vertebrates or ants. Though absolute quantities of seeds removed varied among the 3 granivore classes, calculations of preference based on weights of each seed species removed by each granivore class indicated that all 3 ranked the seeds similarly. Preference hierarchies of the 3 granivore classes were highly positively correlated with both calories per seed and % soluble carbohydrate of the seeds. The first correlation supports a basic prediction of optimal foraging theory —that foragers should maximize energy intake per unit time spent foraging. Both correlations emphasize the role of seed nutritional qualities in granivore seed selectivity in that soluble carbohydrate is a water-efficient energy source and its percentage is a good indicator of the digestible energy available in a food item. A corollary experiment comparing granivore use of an exotic seed (millet [Panicum miliaceum]) and a preferred native seed (Oryzopsis) demonstrated a distinct preference for the exotic. Since millet seeds are particularly high in % soluble carbohydrate, this result reinforced the apparent value of this nutritional attribute as a predictor of granivore seed preference. Among many seed resource characteristics upon which granivore seed selectivity might operate, our results indicate that individual species' nutritional composition may be particularly important. Thus, inferences about seed selectivity and resource partitioning among arid-land granivores should be interpreted with caution, especially those based on experiments using seed introductions, since the influence of seed nutritional attributes has not been widely acknowledged heretofore.  相似文献   

18.
The question of whether annual weeds are allelopathic under natural conditions still remains to be critically answered. Investigations were carried out to understand the involvement and mode of operation of allelopathy in an annual weed, Polypogon monspeliensis. Comparative studies of soils associated with and without the weed under field conditions revealed that there was no significant difference in toxicity of the two soils, and thus the possibility of its allelopathic effect on crops grown in the same season could be ruled out. However, soil amended with weed straw had significantly higher total phenolics including higher relative concentrations of phenolic fractions that were not detected in unamended soil. Phenolic fractions significantly affected the seedling growth of radish and cluster bean. It is likely that P. monspeliensis did not interfere chemically with the crops cultivated during the same season, but interfered with the following season crop through incorporated straw. These results indicate how a monocarpic annual such as P. monspeliensis can be allelopathic under field conditions and allelopathic potential can be managed. We suggest that before detailed investigations on allelopathy are performed as per earlier recommended protocols, data on weed life cycle pattern and agricultural practices should be collected.  相似文献   

19.
20.
Summary Marigold (Tagetes patula L.) contains secondary metabolites toxic to various organisms. While these compounds may function as defensive agents in the plant, it is not clear whether they are exuded into the rhizosphere. Using a continuous root exudate trapping system and capillary column gas chromatography/mass spectrometry/data system, four thiophenes and two benzofurans were identified in the root exudates collected from the undisturbed rhizosphere of marigold. The importance of rhizospheric chemistry in the study of allelopathy is stressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号