首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
双季稻田种植不同冬季作物对甲烷和氧化亚氮排放的影响   总被引:4,自引:0,他引:4  
研究双季稻收获后填闲种植不同冬季作物在其生长季节内CH4和N2O的排放特征,对合理利用冬闲稻田,发展冬季作物生产及合理评价不同种植模式具有重要意义。采用静态箱-气相色谱法对冬季免耕直播黑麦草、紫云英、油菜以及翻耕移栽油菜和冬闲的双季稻田中甲烷(CH4)和氧化亚氮(N2O)排放进行了分析。结果表明:在冬季作物生长期,CH4、N2O平均排放通量和总排放量均表现为翻耕移栽油菜>免耕直播黑麦草>免耕直播油菜>免耕直播紫云英>冬闲。不同冬季作物稻田CH4和N2O总排放量与对照(冬闲)的差异均达到极显著水平(P<0.01);翻耕移栽油菜的双季稻田中CH4和N2O排放量最高,分别达2.989 g/m2和0.719 g/m2。翻耕移栽油菜稻田的CH4和N2O温室效应总和也最大,为2893.92 kg CO2/hm2;免耕直播黑麦草和免耕直播油菜处理次之,而免耕直播紫云英处理最低。种植不同冬季作物促进了稻田生态系统CH4和N2O的排放。  相似文献   

2.
Effects of Crop Diversity on Agroecosystem Function: Crop Yield Response   总被引:2,自引:0,他引:2  
Understanding the role of diversity in the functioning of ecosystems has important implications for agriculture. Previous agricultural research has shown that crop rotation and the use of cover crops can lead to increases in yield relative to monoculture; however, few studies have been performed within the broader context of diversity–ecosystem function theory and in the absence of chemical inputs. We performed a field experiment in SW Michigan, USA, in which we manipulated the number of crop species grown in rotation and as winter cover crops over a 3-year period to test if varying the number of species in a rotation affected grain yield, a critical metric of ecosystem function in row-crops. The experimental design was unique in that no fertilizer or pesticides were used, and the only management variable manipulated was number of species in the rotation, thus providing a strong comparison to grassland diversity–ecosystem function experiments. Treatments included continuous monocultures of three row-crops, corn Zea mays L., soybean Glycine max (L.) Merr., and winter wheat Triticum aestivum L., and 2- and 3-year annual rotations with and without cover crops (zero, one, or two legume/small grain species), encompassing a range of crop diversity from one to six species. Crop yields and weed biomass were measured annually for 3 years and plant available soil nitrogen was measured over the course of the growing season in the final year of the study. In all 3 years, corn grain yield increased linearly in response to the number of crops in the rotation. Corn yields in the highest diversity treatment (three crops, plus three cover crops) were over 100% higher than in continuous monoculture and were not significantly different from the county average for each of the 3 years despite the absence of chemical inputs. Corn yields in the diversity treatments were strongly correlated with the availability of inorganic soil nitrogen, which was likely influenced by the number of different legume species (crops and cover crops) present in the rotation. In soybean and winter wheat, yield differences among crop diversity treatments were also significant, but of lower magnitude (32 and 53%, respectively), and showed little direct relationship to the number of crop species grown in a rotation. Results demonstrate that agricultural research motivated by ecological theory can provide important insights into the functioning of agroecosystems and enhance our understating of the linkages between diversity and ecosystem function. Importantly, these results suggest that reduced chemical inputs do not necessarily result in yield penalties and provide support for incorporation of crop or species diversity when determining how ecosystem services can be included in food, fiber, and biofuel production.  相似文献   

3.
Nitrogen (N) mineralization is a spatially variable and difficult component of the N cycle to quantify accurately under field conditions. Net N-mineralization was compared by direct measurement, indirect estimate, and laboratory incubation for a restored tallgrass prairie and for deficiently and optimally N-fertilized, no-tillage (NT) and chisel-plowed (CP) maize (Zea mays L.) agroecosystems on Plano silt loam soil (fine-silty, mixed, superactive, mesic Typic Argiudoll) in Wisconsin, USA. Four years of in-situ field measurements using an incubated-soil-core/ion-exchange-resin-bag technique showed that land use significantly affected net N-mineralization. Net N-mineralization was consistently smaller in the restored prairie than in the maize agroecosystems and typically larger in the CP than in the NT maize agroecosystems. Three independent methods for indirectly estimating annual net N-mineralization (i.e., N budget residual, deficiently N-fertilized plant N uptake, and profile-scaled in-situ field measurements) were relatively consistent at capturing land-use and tillage effects on net N-mineralization. Laboratory incubation and periodic leaching of Fall-sampled soils demonstrated that both mineralized N and labile C were co-limiting factors influencing N-mineralization in agricultural soils and generally supported field measurements by showing a significant difference in net N-mineralization with and without added fertilizer-N.  相似文献   

4.
不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究   总被引:94,自引:8,他引:86  
以长期定位试验为基本材料,研究了不同耕作方式对土壤动物、微生物及酶活性的影响.结果表明,0~20cm土壤层内大、中、小型土壤动物垄作免耕为14700个·m^-22,冬水免耕为10450个·m^-22水旱轮作为7950个·m^-22常规平作为6275个·m^-22,垄作免耕处理土壤动物的数量是常规平作的2.34倍.土壤微生物数量和土壤微生物生物量氮因季节而异,总体上是春秋多而夏季少,土壤酶活性表现出表层高,底层低.土壤微生物数量、土壤微生物生物量氮及土壤酶活性不同处理间仍是垄作免耕>水旱轮作>冬水免耕>常规平作,表明垄作免耕有利于改善稻田土壤生态环境。有利于土壤肥力的提高。  相似文献   

5.
Summary Tillage has been shown to affect the uptake of phosphorus (P) and yield of soybeans, [Glycine max (L.) Merr.], but there is little information concerning the effects of P fertilization on nitrogen (N2) fixation in soybeans under no-tillage. Two field experiments were conducted in 1980 and 1981 to determine the effects of soil P on N2 fixation under no-tillage and to study the interaction of P fertilization and tillage of N2 fixation, nutrient uptake, and yield of soybeans. In Exp. I, P was applied in 1977 at five rates up to 384 kg P ha−1 and the effects of residual soil P were evaluated in 1980 and 1981 under no-tillage management. Nitrogen fixation rates, as measured by acetylene reduction assay, were significantly affected by soil P in Exp. I, but the assay proved to be a poor technique for estimating total plant N in these tests. Acetylene reduction rates and plant P increased rapidly as soil P increased from 2 to 20 mg kg−1, with little additional increase above 20 mg P kg−1. In Exp. II, rates (0, 32, 64, and 128 kg P ha−1) and time (fall, spring and fall plus spring) of P application were compared under conventional tillage and no tillage. However, plant P increased with increasing levels of applied P. Applied P had no affect on acetylene reduction rates but rates were greater for no-tillage than conventional tillage at the V9 and R5 stages of growth in 1981. Plant uptake of P was more efficient under no-tillage than under conventional tillage in 1980 and 1981. Application of 64 kg P ha−1 under no-tillage resulted in equivalent plant P levels as the 128 kg P ha−1 applied under conventional tillage.  相似文献   

6.
Summary Catalase activity of a loamy sand under a 3-year crop rotation in the southeastern U.S.A. was monitored. Corn (Zea mays L.), cotton (Gossypium hirsutum L.), and soybean [Glycine max (L.) Merr.] were the summer crops in the rotation. Winter wheat (Triticum aestivum L.) was planted after corn, and soybean was followed by a winter fallow period. Cotton was followed by a mixture of common vetch (Vicia sativa L.) and crimson clover (Trifolium incarnatum Gibelli & Belli) which was eventually plow-incorporated as a green manure. Highest mean catalase activities were recorded in soil under the wheat, soybean, and winter legume crops; lowest activities were found in soil bearing corn and cotton, and during the winter fallow period. The fertilization regime influenced soil catalase activity independently of the crop. Soil deficient in any of the major elements showed low enzyme activity. Highest activity was found in soil fertilized with P and K, and with N supplied by a winter legume crop. Addition of supplementary mineral nitrogen to this regime reduced catalase activity. Elimination of the winter legume crop from an otherwise complete fertilization regime resulted in a drastic reduction in enzyme activity. In soil receiving a complete fertilization regime there was a close correlation between soil catalase and xylanase activities. A similar correlation between these two enzymes was not found in soil receiving incomplete fertilization.  相似文献   

7.
This study evaluated the effects of agroecosystem diversification through no-tillage and strip intercropping on the abundance of natural enemies of soybean (Glycine max Merrill) herbivores. Twenty-four plots (289 m2 each) were arranged in a randomized complete block design for a 3 by 2 factorial experiment. Factors were cropping systems (corn monoculture, soybean monoculture, and strip intercropping of corn and soybean) and tillage systems (no-tillage and conventional tillage). Natural enemies were sampled during 1988, 1989 and 1990 by sweep net, suction net (D-Vac), pitfall traps and quadrat samples. Analyses of variance indicated that of 15 taxa analyzed, most foliage-inhabiting natural enemies were significantly more abundant in intercropping than in monoculture plots, whereas soil-inhabiting natural enemies had higher numbers in no-tillage plots than conventional tillage plots. Therefore, the results support the theory of greater abundance of natural enemies in more complex agroecosystems. Better environmental conditions in diversified treatments was the possible reason for these results. Corn in intercropping plots provided shade, reduced wind speed, alternate food, and possibly higher humidity and lower temperatures for soybean natural enemies. A similar effect was likely cuased by the stubble and weeds, in no-tillage plots.  相似文献   

8.
保护性耕作对农田土壤水分和冬小麦产量的影响   总被引:4,自引:0,他引:4  
保护性耕作是提高土壤蓄水保墒能力并增加作物产量的重要农艺措施之一.基于河南省长期定位试验2011-2016年数据,分析不同耕作措施(传统耕作、免耕和深松处理)对土壤水分、作物产量和水分利用效率的影响.结果表明: 2011-2016年免耕和深松耕作处理下冬小麦拔节期平均相对保墒率分别为7.3%和-0.68%,且免耕较传统耕作显著提高了冬小麦拔节期0~60 cm土壤贮水量.与传统耕作相比,免耕提高了冬小麦拔节期、扬花期、灌浆期和成熟期0~100 cm土壤平均含水量,而深松耕作并未明显提高冬小麦拔节期土壤平均含水量.此外,免耕较传统耕作能够显著提高冬小麦产量和水分利用效率,尤其在较干旱年份其增产效果更优.因此,免耕的蓄水保墒及增产效果在较干旱年份明显优于深松耕作.  相似文献   

9.
Biological nitrogen fixation in mixed legume-cereal cropping systems   总被引:6,自引:1,他引:5  
Cereal/legume intercropping increases dry matter production and grain yield more than their monocultures. When fertilizer N is limited, biological nitrogen fixation (BNF) is the major source of N in legume-cereal mixed cropping systems. The soil N use patterns of component crops depend on the N source and legume species. Nitrogen transfer from legume to cereal increases the cropping system's yield and efficiency of N use. The use of nitrate-tolerant legumes, whose BNF is thought to be little affected by application of combined N, may increase the quantity of N available for the cereal component. The distance between the cereal and legume root systems is important because N is transferred through the intermingling of root systems. Consequently, the most effective planting distance varies with type of legume and cereal. Mutual shading by component crops, especially the taller cereals, reduces BNF and yield of the associated legume. Light interception by the legume can be improved by selecting a suitable plant type and architecture. Planting pattern and population at which maximum yield is achieved also vary among component species and environments. Crops can be mixed in different proportions from additive to replacement or substitution mixtures. At an ideal population ratio a semi-additive mixture may produce higher gross returns.  相似文献   

10.
The response of sole and intercropped cereal to nitrogen fertilization was compared in three contrasting cropping systems, sorghum/pigeonpea, maize/groundnut, and sorghum/cowpea. The cereal in these systems responded to nitrogen similarly as in sole cropping, although different legumes affected the cereal differently. There was no current season benefit from the legume, whether it matured earlier or later than the cereal, and for high yields the cereal in intercropping needs fertilizer application. Response to nitrogen varied with the amount and distribution of seasonal rainfall. With increased nitrogen fertilizer applied to the intercropped cereal, the legume yields were suppressed. The optimum dose for the intercropped cereal was similar to that for sole cropping but it was 50% less in a dry year particularly, on a shallow Alfisol. The combined yields of both crops made intercropping more profitable than sole cropping. The relative advantage of intercropping was high in the sorghum/pigeonpea system (40 to 70%) because of the greater temporal difference between species, and moderate in the maize/groundnut (13 to 35%), and sorghum/cowpea (18 to 25%) systems. Although the relative advantage of intercropping (expressed as Land Equivalent Ratio (LER)) decreased with N, the economic value, of the advantage was little affected within the optimum N range because absolute yields increased with fertilization.  相似文献   

11.
Field experiments were done to evaluate the extent to which cover crops can be used to help farmers comply with current legislation on nitrate leaching from arable land in nitrate vulnerable zones. Nitrate leaching was measured in sandy loam and chalky loam soils under a range of early sown (mid-August) cover crops at two sites in SE England, and in the subsequent winter following their incorporation. Cover crop species tested were forage rape, rye, white mustard, a rye/white mustard mixture, Phacelia and ryegrass. Additional treatments were weeds plus cereal volunteers, a bare fallow and a conventional winter barley crop sown one month later than the cover crops and grown to maturity. Cover crop and bare fallow treatments were followed by spring barley. This was followed by winter barley, as was the conventional winter barley crop. In the winter immediately after establishment, early sown cover crops decreased nitrate leaching by 29–91% compared to bare fallow. They were most effective in a wet winter on the sandy loam where nitrate leaching under bare fallow was greatest. There was little difference between cover crop species with respect to their capacity to decrease nitrate leaching, but losses were consistently smaller under forage rape. The growth of weeds plus cereal volunteers significantly decreased nitrate leaching on the sandy loam compared with a bare fallow, but was less effective on the chalky loam. Nitrate leaching under the later sown winter barley was often greater than under cover crops, but under dry conditions leaching losses were similar. In the longer-term, in most cases, the inclusion of cover crops in predominantly cereal-based cropping systems did not significantly decrease cumulative nitrate leaching compared with two successive winter cereals. In summary, early sown cover crops are most likely to be effective when grown on freely drained sandy soils where the risk of nitrate leaching is greatest. They are less likely to be effective on poorer drained, medium-heavy textured soils in the driest parts of SE England. In these areas the regeneration of weeds and cereal volunteers together with some additional broadcast seed may be sufficient to avoid excessive nitrate losses. In the short-term, mineralization of N derived from the relatively small cover crops grown once every 3–4years in cereal-based cropping systems is unlikely to contribute greatly to nitrate leaching in later years and adjustments to fertilizer N recommendations will not usually be necessary.  相似文献   

12.
Developing sustainable management practices including appropriate residue removal and nitrogen (N) fertilization for bioenergy sorghum is critical. However, the effects of residue removal and N fertilization associated with bioenergy sorghum production on soil organic carbon (SOC) are less studied compared to other crops. The objective of our research was to assess the impacts of residue removal and N fertilization on biomass yield and SOC under biomass sorghum production. Field measurements were used to calibrate the DNDC model, then verified the model by comparing simulated results with measured results using the field management practices as agronomic inputs. Both residue removal and N fertilization affected bioenergy sorghum yields in some years. The average measured SOC at 0–50 cm across the treatments and the time-frame ranged from 47.5 to 78.7 Mg C ha−1, while the simulated SOC was from 56.3 to 67.3 Mg C ha−1. The high correlation coefficients (0.65 to 0.99) and low root mean square error (3 to 18) between measured and simulated values indicate the DNDC model accurately simulated the effects of residue removal with N fertilization on bioenergy sorghum production and SOC. The model predictions revealed that there is, in the long term, a trend for higher SOC under bioenergy sorghum production regardless of residue management.  相似文献   

13.
Understanding nitrogen (N) removal and replenishment is crucial to crop sustainability under rising atmospheric carbon dioxide concentration ([CO2]). While a significant portion of N is removed in grains, the soil N taken from agroecosystems can be replenished by fertilizer application and N2 fixation by legumes. The effects of elevated [CO2] on N dynamics in grain crop and legume pasture systems were evaluated using meta‐analytic techniques (366 observations from 127 studies). The information analysed for non‐legume crops included grain N removal, residue C : N ratio, fertilizer N recovery and nitrous oxide (N2O) emission. In addition to these parameters, nodule number and mass, nitrogenase activity, the percentage and amount of N fixed from the atmosphere were also assessed in legumes. Elevated [CO2] increased grain N removal of C3 non‐legumes (11%), legumes (36%) and C4 crops (14%). The C : N ratio of residues from C3 non‐legumes and legumes increased under elevated [CO2] by 16% and 8%, respectively, but the increase for C4 crops (9%) was not statistically significant. Under elevated [CO2], there was a 38% increase in the amount of N fixed from the atmosphere by legumes, which was accompanied by greater whole plant nodule number (33%), nodule mass (39%), nitrogenase activity (37%) and %N derived from the atmosphere (10%; non‐significant). Elevated [CO2] increased the plant uptake of fertilizer N by 17%, and N2O emission by 27%. These results suggest that N demand and removal in grain cropping systems will increase under future CO2‐enriched environments, and that current N management practices (fertilizer application and legume incorporation) will need to be revised.  相似文献   

14.
Aims Nitrogen (N) fertilization and lime addition may affect soil microbial and nematode communities and ecosystem functions through changing environmental conditions, such as soil pH and soil organic carbon. The objectives of this experiment were to examine the impact of N input and liming on soil microbial and nematode communities and to identify the key environmental determinant of community composition in a century-old fertilization and crop rotation experiment.Methods The field experiment consisting of a 3-year crop rotation regime was established in 1911 in southeastern USA. Four treatments, (i) no-input control, (ii) NPK with winter legume, (iii) PK with legume and lime and (iv) NPK with legume and lime, were included in this study. Soil samples collected at the 0–5cm depth were used to determine the bacterial growth rate by the 3 H-thymidine incorporation technique. Incorporation of 13 C into neutral lipids, glycolipids and phospholipid fatty acids (PLFAs) was measured after incubation of soil with 13 C-labeled acetate for 24h. Free-living nematodes in fresh soil were extracted using a density sucrose centrifugal flotation method and identified to trophic group level.Important findings Liming resulted in a 10-fold increase in bacterial growth rates compared with the no-input control, whereas N fertilization had no significant effect. Multivariate analysis of PLFA profiles showed that soil microbial community composition was different among the four treatments; the difference was primarily driven by soil pH. PLFAs indicative of Gram-negative bacteria covaried with soil pH, but not those of fungi and actinobacteria. Liming enhanced 13 C incorporation into neutral lipids, glycolipids and phospholipids by 2–15 times. In addition, 13 C incorporation into 16:0, 16:1ω9, 18:1ω9, 18:1ω7 and 18:2ω6 were greater than other PLFAs, suggesting that Gram-negative bacteria and fungi were more active and sensitive to simple C input. Bacterivorous nematodes were the dominant trophic group in the soil, but no significant differences in nematode communities were found among the treatments. Our results suggest that soil pH had a greater impact than N fertilization on soil microbial community composition and activity in a crop rotation system including legumes.  相似文献   

15.
Nitrogen (N) is often the most limiting nutrient in organic cropping systems. N2 fixing crops present an important option to improve N supply and to maintain soil fertility. In a field experiment, we investigated whether the lower N fertilization level and higher soil microbial activity in organic than conventional systems affected symbiotic N2 fixation by soybean (Glycine max, var. Maple Arrow) growing in 2004 in plots that were since 1978 under the following systems: bio-dynamic (DYN); bio-organic (ORG); conventional with organic and mineral fertilizers (CON); CON with exclusively mineral fertilizers (MIN); non-fertilized control (NON). We estimated the percentage of legume N derived from the atmosphere (%Ndfa) by the natural abundance (NA) method. For ORG and MIN we additionally applied the enriched 15N isotope dilution method (ID) based on residual mineral and organic 15N labeled fertilizers that were applied in 2003 in microplots installed in ORG and MIN plots. These different enrichment treatments resulted in equal %Ndfa values. The %Ndfa obtained by NA for ORG and MIN was confirmed by the ID method, with similar variation. However, as plant growth was restricted by the microplot frames the NA technique provided more accurate estimates of the quantities of symbiotically fixed N2 (Nfix). At maturity of soybean the %Ndfa ranged from 24 to 54%. It decreased in the order ORG > CON > DYN > NON > MIN, with significantly lowest value for MIN. Corresponding Nfix in above ground plant material ranged from 15 to 26 g N m-2, with a decreasing trend in the order DYN = ORG > CON > MIN > NON. For all treatments, the N withdrawal by harvested grains was greater than Nfix. This shows that at the low to medium %Ndfa, soybeans did not improve the N supply to any system but removed significant amounts of soil N. High-soil N mineralization and/or low-soil P availability may have limited symbiotic N2 fixation.  相似文献   

16.
A field experiment was conducted using15N methodology to study the effect of cultivation of faba bean (Vicia faba L.), pea (Pisum sativum L.) and barley (Hordeum vulgare L.) on the N status of soil and their residual N effect on two succeeding cereals (sorghum (Sorghum vulgare) followed by barley). Faba bean, pea and barley took up 29.6, 34.5 and 53.0 kg N ha–1 from the soil, but returned to soil through roots only 11.3, 10.8 and 5.7 kg N ha–1, respectively. Hence, removal of faba bean, pea and barley straw resulted in a N-balance of about –18, –24, and –47 kg ha–1 respectively. A soil nitrogen conserving effect was observed following the cultivation of faba bean and pea compared to barley which was of the order of 23 and 18 kg N ha–1, respectively. Cultivation of legumes resulted in a significantly higher AN value of the soil compared to barley. However, the AN of the soil following fallow was significantly higher than following legumes, implying that the cultivation of the legumes had depleted the soil less than barley but had not added to the soil N compared to the fallow. The beneficial effect of legume cropping also was reflected in the N yield and dry matter production of the succeeding crops. Cultivation of legumes led to a greater exploitation of soil N by the succeeding crops. Hence, appreciable yield increases observed in the succeeding crops following legumes compared to cereal were due to a N-conserving effect, carry-over of N from the legume residue and to greater uptake of soil N by the succeeding crops when previously cropped to legumes.  相似文献   

17.
在江西双季稻田进行长期田间定位试验,分析了多年保护性耕作对水稻产量、土壤理化性状及生物学性状的影响。连续8a稻田保护性耕作处理的平均产量高于传统耕作4.46%—8.79%,各处理的有效穗数、每穗粒数和结实率均高于对照,而各处理间穗长和千粒重差异不显著。实行稻田保护性耕作处理的土壤容重低于传统耕作3.6%—5.6%,而总孔隙度和毛管孔隙度分别高出传统耕作1.6%—17.4%、2.4%—16.7%。与传统耕作相比,连续8a保护性耕作显著提高了土壤有机质(2.9%—10.0%)、有效磷(4.8%—31.6%)、速效钾(9.7%—25.7%)。在2005年免耕+插秧的土壤真菌数量最多,显著高于对照处理51.6%,免耕+抛秧在2008年达到最大,显著高于对照处理54.1%。2012年免耕+抛秧、免耕+插秧显著高于对照126.1%、121.1%;另外,各处理间过氧化氢酶、脲酶活性均差异不显著。8a间土壤转化酶活性变化范围在0.292—0.451 mg/g之间,其中2005—2007、2012年均是免耕+抛秧达到最大,与对照相比,增加范围为72.7%—137.7%,且差异显著(P0.05)。因此,实行稻田保护性耕作是适合江南丘陵区双季稻区农业可持续发展的有效模式之一,其中免耕+抛秧和免耕+插秧两种方式效果最为显著。  相似文献   

18.
Non-cultivated N2-fixing indigenous legumes can be harnessed to enhance soil fertility replenishment of smallholder farms. Understanding N release patterns of biomass generated by such legumes is key in managing N availability to crops. Nitrogen and C mineralization patterns of indigenous legume species, mainly ofTephrosia andCrotalaria genera, and of soils sampled at termination of 1- and 2-year indigenous legume fallows (indifallows)were investigated in leaching tube incubations under laboratory conditions. With the exception ofTephrosia longipes Meisn (2.4%) andCrotalaria cylindrostachys Welw.ex Baker (1.8%), all indigenous legumes had >2.5% N. Total polyphenols and lignin were <4% and 15%, respectively, for all species.Crotalaria pallida (L.) andEriosema ellipticum Welw.ex Baker mineralized >50% of the added N in the first 30 days of incubation. Similar to mixed plant biomass from natural weed fallow,C. Cylindrostachys immobilized N during the 155-day incubation period. Indifallow fallow biomass reached peak N mineralization 55 days after most legumes had leveled off. Carbon release by legume species closely followedN release patterns,with mostCrotalaria species releasing >500 mg CO2-C kg?1 soil. Soils sampled at termination of fallows reached peak N mineralization in the first 21 days of incubation, with indifallows mineralizing significantly (P<0.05) more N than natural fallows. Application of mineral P fertilizer to indifallows and natural fallows increased C and N mineralization relative to control treatments. It was concluded that (i) indigenous legumes generate biomass of high quality within a single growing season, (ii) the slow N release of biomass generated under indifallow systems suggests that such fallows can potentially be manipulated to enhance N availability to crops, and (iii) N and C mineralization of organic materials in sandy soils is likely controlled by availability of P to the soil microbial pool.  相似文献   

19.
Low input legume-based agriculture exists in a continuum between subsistence farming and intensive arable and pastoral systems. This review covers this range, but with most emphasis on temperate legume/grass pastures under grazing by livestock. Key determinants of nitrogen (N) flows in grazed legume/grass pastures are: inputs of N from symbiotic N2 fixation which are constrained through self-regulation via grass/legume interactions; large quantities of N cycling through grazing animals with localised return in excreta; low direct conversion of pasture N into produce (typically 5–20%) but with N recycling under intensive grazing the farm efficiency of product N: fixed N can be up to 50%; and regulation of N flows by mineralisation/immobilisation reactions. Pastoral systems reliant solely on fixed N are capable of moderate-high production with modest N losses e.g. average denitrification and leaching losses from grazed pastures of 6 and 23 kg N ha–1 yr–1. Methods for improving efficiency of N cycling in legume-based cropping and legume/grass pasture systems are discussed. In legume/arable rotations, the utilisation of fixed N by crops is influenced greatly by the timing of management practices for synchrony of N supply via mineralisation and crop N uptake. In legume/grass pastures, the spatial return of excreta and the uptake of excreta N by pastures can potentially be improved through dietary manipulation and management strategies. Plant species selection and plant constituent modification also offer the potential to increase N efficiency through greater conversion into animal produce, improved N uptake from soil and manipulation of mineralisation/immobilisation/nitrification reactions.  相似文献   

20.
Many microbial turnover processes in acidic sandy subtropical soils are still poorly understood. In a 59-day pot and a 189-day laboratory incubation experiment with two West African continuous cereal soils, the effects of 2 mg g?1 root residues were investigated on growth of sorghum seedlings, soil microbial biomass and activity indices, using cowpea, groundnut, pearl millet, maize and sorghum. The effects of root residues were compared with mineral P or mineral P + N treatments and with a non-fertilized control treatment. On the Alfisol (Fada, Burkina Faso), shoot dry mass was always significantly higher than on the Ultisol (Koukombo, Togo). Highest shoot dry mass was observed after application of mineral P + N on the Alfisol and after mineral P alone on the Ultisol. The application of legume root residues led to small and non-significant increases in dry mass production compared to the non-amended control, whereas the application of cereal root residues led to a decline, regardless of their origin (millet, maize or sorghum). Contents of microbial biomass C, microbial biomass N and ergosterol were 75 to 100% higher in the Alfisol than in the Ultisol, while ATP was only 36% higher. Organic amendments increased ergosterol concentrations by up to 145% compared to the control and mineral P application. Microbial biomass C and microbial biomass N increased by up to 50% after application of root residues, but ATP only up to 20%. After application of legume root residues, cumulative CO2 production was similar in both soils with an average of 370?µg CO2-C g?1 over 189 days. After application of cereal root residues, cumulative CO2 production was higher in the Alfisol (530?µg g?1) than in the Ultisol (445?µg g) over 189 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号