首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 910 毫秒
1.
Membrane proteins are regulated by the lipid bilayer composition. Specific lipid-protein interactions rarely are involved, which suggests that the regulation is due to changes in some general bilayer property (or properties). The hydrophobic coupling between a membrane-spanning protein and the surrounding bilayer means that protein conformational changes may be associated with a reversible, local bilayer deformation. Lipid bilayers are elastic bodies, and the energetic cost of the bilayer deformation contributes to the total energetic cost of the protein conformational change. The energetics and kinetics of the protein conformational changes therefore will be regulated by the bilayer elasticity, which is determined by the lipid composition. This hydrophobic coupling mechanism has been studied extensively in gramicidin channels, where the channel-bilayer hydrophobic interactions link a "conformational" change (the monomer<-->dimer transition) to an elastic bilayer deformation. Gramicidin channels thus are regulated by the lipid bilayer elastic properties (thickness, monolayer equilibrium curvature, and compression and bending moduli). To investigate whether this hydrophobic coupling mechanism could be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (beta-octyl-glucoside, Genapol X-100, Triton X-100, and reduced Triton X-100) that make lipid bilayers less "stiff", as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change in gA channel lifetime. Cholesterol-depletion, which also reduces bilayer stiffness, causes a similar shift in sodium channel inactivation. These results provide strong support for the notion that bilayer-protein hydrophobic coupling allows the bilayer elastic properties to regulate membrane protein function.  相似文献   

2.
We present a quantitative analysis of the effects of hydrophobic matching and membrane-mediated protein-protein interactions exhibited by gramicidin embedded in dimyristoylphosphatidylcholine (DMPC) and dilauroylphosphatidylcholine (DLPC) bilayers (Harroun et al., 1999. Biophys. J. 76:937-945). Incorporating gramicidin, at 1:10 peptide/lipid molar ratio, decreases the phosphate-to-phosphate (PtP) peak separation in the DMPC bilayer from 35.3 A without gramicidin to 32.7 A. In contrast, the same molar ratio of gramicidin in DLPC increases the PtP from 30.8 A to 32.1 A. Concurrently, x-ray in-plane scattering showed that the most probable nearest-neighbor separation between gramicidin channels was 26.8 A in DLPC, but reduced to 23.3 A in DMPC. In this paper we review the idea of hydrophobic matching in which the lipid bilayer deforms to match the hydrophobic surface of the embedded proteins. We use a simple elasticity theory, including thickness compression, tension, and splay terms to describe the membrane deformation. The energy of membrane deformation is compared with the energy cost of hydrophobic mismatch. We discuss the boundary conditions between a gramicidin channel and the lipid bilayer. We used a numerical method to solve the problem of membrane deformation profile in the presence of a high density of gramicidin channels and ran computer simulations of 81 gramicidin channels to find the equilibrium distributions of the channels in the plane of the bilayer. The simulations contain four parameters: bilayer thickness compressibility 1/B, bilayer bending rigidity Kc, the channel-bilayer mismatch Do, and the slope of the interface at the lipid-protein boundary s. B, Kc, and Do were experimentally measured; the only free parameter is s. The value of s is determined by the requirement that the theory produces the experimental values of bilayer thinning by gramicidin and the shift in the peak position of the in-plane scattering due to membrane-mediated channel-channel interactions. We show that both hydrophobic matching and membrane-mediated interactions can be understood by the simple elasticity theory.  相似文献   

3.
Energetics of inclusion-induced bilayer deformations.   总被引:3,自引:2,他引:1       下载免费PDF全文
The material properties of lipid bilayers can affect membrane protein function whenever conformational changes in the membrane-spanning proteins perturb the structure of the surrounding bilayer. This coupling between the protein and the bilayer arises from hydrophobic interactions between the protein and the bilayer. We analyze the free energy cost associated with a hydrophobic mismatch, i.e., a difference between the length of the protein's hydrophobic exterior surface and the average thickness of the bilayer's hydrophobic core, using a (liquid-crystal) elastic model of bilayer deformations. The free energy of the deformation is described as the sum of three contributions: compression-expansion, splay-distortion, and surface tension. When evaluating the interdependence among the energy components, one modulus renormalizes the other: e.g., a change in the compression-expansion modulus affects not only the compression-expansion energy but also the splay-distortion energy. The surface tension contribution always is negligible in thin solvent-free bilayers. When evaluating the energy per unit distance (away from the inclusion), the splay-distortion component dominates close to the bilayer/inclusion boundary, whereas the compression-expansion component is more prominent further away from the boundary. Despite this complexity, the bilayer deformation energy in many cases can be described by a linear spring formalism. The results show that, for a protein embedded in a membrane with an initial hydrophobic mismatch of only 1 A, an increase in hydrophobic mismatch to 1.3 A can increase the Boltzmann factor (the equilibrium distribution for protein conformation) 10-fold due to the elastic properties of the bilayer.  相似文献   

4.
5.
Hydrophobic interactions between a bilayer and its embedded membrane proteins couple protein conformational changes to changes in the packing of the surrounding lipids. The energetic cost of a protein conformational change therefore includes a contribution from the associated bilayer deformation energy (DeltaGdef0), which provides a mechanism for how membrane protein function depends on the bilayer material properties. Theoretical studies based on an elastic liquid-crystal model of the bilayer deformation show that DeltaGdef0 should be quantifiable by a phenomenological linear spring model, in which the bilayer mechanical characteristics are lumped into a single spring constant. The spring constant scales with the protein radius, meaning that one can use suitable reporter proteins for in situ measurements of the spring constant and thereby evaluate quantitatively the DeltaGdef0 associated with protein conformational changes. Gramicidin channels can be used as such reporter proteins because the channels form by the transmembrane assembly of two nonconducting monomers. The monomerleft arrow over right arrow dimer reaction thus constitutes a well characterized conformational transition, and it should be possible to determine the phenomenological spring constant describing the channel-induced bilayer deformation by examining how DeltaGdef0 varies as a function of a mismatch between the hydrophobic channel length and the unperturbed bilayer thickness. We show this is possible by analyzing experimental studies on the relation between bilayer thickness and gramicidin channel duration. The spring constant in nominally hydrocarbon-free bilayers agrees well with estimates based on a continuum analysis of inclusion-induced bilayer deformations using independently measured material constants.  相似文献   

6.
In this paper we calculate surface conformation and deformation free energy associated with the incorporation of gramicidin channels into phospholipid bilayer membranes. Two types of membranes are considered. One is a relatively thin solvent-free membrane. The other is a thicker solvent-containing membrane. We follow the approach used for the thin membrane case by Huang (1986) in that we use smectic liquid crystal theory to evaluate the free energy associated with distorting the membrane to other than a flat configuration. Our approach is different from Huang, however, in two ways. One is that we include a term for surface tension, which Huang did not. The second is that one of our four boundary conditions for solving the fourth-order differential equation describing the free energy of the surface is different from Huang's. The details of the difference are described in the text. Our results confirm that for thin membranes Huang's neglect of surface tension is appropriate. However, the precise geometrical form that we calculate for the surface of the thin membrane in the region of the gramicidin channel is somewhat different from his. For thicker membranes that have to deform to a greater extent to accommodate the channel, we find that the contribution of surface tension to the total energy in the deformed surface is significant. Computed results for the shape of the deformed surface, the total energy in the deformed surface, and the contributions of different components to the total energy, are presented for the two types of membranes considered. These results may be significant for understanding the mechanisms of dimer formation and breakup, and the access resistance for ions entering gramicidin channels.  相似文献   

7.
A statistical thermodynamic approach is used to analyze the various contributions to the free energy change associated with the insertion of proteins and protein fragments into lipid bilayers. The partition coefficient that determines the equilibrium distribution of proteins between the membrane and the solution is expressed as the ratio between the partition functions of the protein in the two phases. It is shown that when all of the relevant degrees of freedom (i.e., those that change their character upon insertion into the membrane) can be treated classically, the partition coefficient is fully determined by the ratio of the configurational integrals and thus does not involve any mass-dependent factors, a conclusion that is also valid for related processes such as protein adsorption on a membrane surface or substrate binding to proteins. The partition coefficient, and hence the transfer free energy, depend only on the potential energy of the protein in the membrane. Expressing this potential as a sum of a "static" term, corresponding to the equilibrium (minimal free energy) configuration of the protein in the membrane, and a "dynamical" term representing fluctuations around the equilibrium configuration, we show that the static term contains the "solvation" and "lipid perturbation" contributions to the transfer free energy. The dynamical term is responsible for the "immobilization" free energy, reflecting the loss of translational and rotational entropy of the protein upon incorporation into the membrane. Based on a recent molecular theory of lipid-protein interactions, the lipid perturbation and immobilization contributions are then expressed in terms of the elastic deformation free energy resulting from the perturbation of the lipid environment by the foreign (protein) inclusion. The model is formulated for cylindrically shaped proteins, and numerical estimates are given for the insertion of an alpha-helical peptide into a lipid bilayer. The immobilization free energy is shown to be considerably smaller than in previous estimates of this quantity, and the origin of the difference is discussed in detail.  相似文献   

8.
In this article, we examine the mechanical role of the lipid bilayer in ion channel conformation and function with specific reference to the case of the mechanosensitive channel of large conductance (MscL). In a recent article we argued that mechanotransduction very naturally arises from lipid-protein interactions by invoking a simple analytic model of the MscL channel and the surrounding lipid bilayer. In this article, we focus on improving and expanding this analytic framework for studying lipid-protein interactions with special attention to MscL. Our goal is to generate simple scaling relations which can be used to provide qualitative understanding of the role of membrane mechanics in protein function and to quantitatively interpret experimental results. For the MscL channel, we find that the free energies induced by lipid-protein interaction are of the same order as the measured free energy differences between conductance states. We therefore conclude that the mechanics of the bilayer plays an essential role in determining the conformation and function of the channel. Finally, we compare the predictions of our model to experimental results from the recent investigations of the MscL channel by a variety of investigators and suggest a suite of new experiments.  相似文献   

9.
Increasing experimental evidence has shown that membrane protein functionality depends on molecular composition of cell membranes. However, the origin of this dependence is not fully understood. It is reasonable to assume that specific lipid-protein interactions are important, yet more generic effects due to mechanical properties of lipid bilayers likely play a significant role too. Previously it has been demonstrated using models for elastic properties of membranes and lateral pressure profiles of lipid bilayers that the mechanical properties of a lipid bilayer can contribute as much as ∼10 kBT to the free energy difference associated with a change in protein conformational state. Here, we extend those previous approaches to a more realistic model for a large mechanosensitive channel (MscL). We use molecular dynamics together with the MARTINI model to simulate the open and closed states of MscL embedded in a DOPC bilayer. We introduce a procedure to calculate the mechanical energy change in the channel gating using a three-dimensional pressure distribution inside a membrane, computed from the molecular dynamics simulations. We decompose the mechanical energy to terms associated with area dilation and shape contribution. Our results highlight that the lateral pressure profile of a lipid bilayer together with the shape change in gating can induce a contribution of ∼30 kBT on the gating energy of MscL. This contribution arises largely from the interfacial tension between hydrophobic and hydrophilic regions in a lipid bilayer.  相似文献   

10.
Stember JN  Andersen O 《PloS one》2011,6(2):e15563
Membrane elastic properties, which are subject to alteration by compounds such as cholesterol, lipid metabolites and other amphiphiles, as well as pharmaceuticals, can have important effects on membrane proteins. A useful tool for measuring some of these effects is the gramicidin A channels, which are formed by transmembrane dimerization of non-conducting subunits that reside in each bilayer leaflet. The length of the conducting channels is less than the bilayer thickness, meaning that channel formation is associated with a local bilayer deformation. Electrophysiological studies have shown that the dimer becomes increasingly destabilized as the hydrophobic mismatch between the channel and the host bilayer increases. That is, the bilayer imposes a disjoining force on the channel, which grows larger with increasing hydrophobic mismatch. The energetic analysis of the channel-bilayer coupling is usually pursued assuming that each subunit, as well as the subunit-subunit interface, is rigid. Here we relax the latter assumption and explore how the bilayer junction responds to changes in this disjoining force using a simple one-dimensional energetic model, which reproduces key features of the bilayer regulation of gramicidin channel lifetimes.  相似文献   

11.
Line tension of the boundary of specific domains (rafts) rich in sphingomyelin was calculated. The line tension was calculated based on macroscopic theory of elasticity under assumption that the bilayer in raft is thicker than in the surrounding membrane. The calculations took into account the possibility of lateral shift of the domain boundaries located in different monolayers of the membrane. The line tension was associated with the energy of elastic deformations appearing in the vicinity of the boundary in order to compensate for the difference in the thickness of the monolayers. Spatial distribution of deformations and the line tension was calculated by minimization of elastic free energy of the system. Dependence of the line tension on the distance between the domains boundaries located in different monolayers was obtained. It was shown that the line tension is minimal if the distance is about 4 nm. Thus, membrane deformations stabilize the bilayer structure of rafts observed experimentally. The calculated value of line tension is about 0.6 pN for the difference between the monolayer thickness of raft and surrounding membrane of about 0.5 nm, which is in agreement with the experimental data available.  相似文献   

12.
In mechanosensitive (MS) channels, gating is initiated by changes in intra-bilayer pressure profiles originating from bilayer deformation. Here we evaluated two physical mechanisms as triggers of MS channel gating: the energetic cost of protein-bilayer hydrophobic mismatches and the geometric consequences of bilayer intrinsic curvature. Structural changes in the Escherichia coli large MS channel (MscL) were studied under nominally zero transbilayer pressures using both patch clamp and EPR spectroscopic approaches. Changes in membrane intrinsic curvature induced by the external addition of lysophosphatidylcholine (LPC) generated massive spectroscopic changes in the narrow constriction that forms the channel 'gate', trapping the channel in the fully open state. Hydrophobic mismatch alone was unable to open the channel, but decreasing bilayer thickness lowered MscL activation energy, stabilizing a structurally distinct closed channel intermediate. We propose that the mechanism of mechanotransduction in MS channels is defined by both local and global asymmetries in the transbilayer pressure profile at the lipid-protein interface.  相似文献   

13.
Ingolfsson HI  Koeppe RE  Andersen OS 《Biochemistry》2007,46(36):10384-10391
Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) is the major bioactive compound in turmeric (Curcuma longa) with antioxidant, antiinflammatory, anticarcinogenic, and antimutagenic effects. At low muM concentrations, curcumin modulates many structurally and functionally unrelated proteins, including membrane proteins. Because the cell membranes' lipid bilayer serves as a gate-keeper and regulator of many cell functions, we explored whether curcumin modifies general bilayer properties using channels formed by gramicidin A (gA). gA channels form when two monomers from opposing monolayers associate to form a conducting dimer with a hydrophobic length that is less than the bilayer hydrophobic thickness; gA channel formation thus causes a local bilayer thinning. The energetic cost of this bilayer deformation alters the gA monomer <--> dimer equilibrium, which makes the channels' appearance rate and lifetime sensitive to changes in bilayer material properties, and the gA channels become probes for changes in bilayer properties. Curcumin decreases bilayer stiffness, increasing both gA channel lifetimes and appearance rates, meaning that the energetic cost of the gA-induced bilayer deformation is reduced. These results show that curcumin may exert some of its effects on a diverse range of membrane proteins through a bilayer-mediated mechanism.  相似文献   

14.
G protein-coupled receptors (GPCRs) are essential components of cellular signaling pathways. They are the targets of many current pharmaceuticals and are postulated to dimerize or oligomerize in cellular membranes in conjunction with their functional mechanisms. We demonstrate using fluorescence resonance energy transfer how association of rhodopsin occurs by long-range lipid-protein interactions due to geometrical forces, yielding greater receptor crowding. Constitutive association of rhodopsin is promoted by a reduction in membrane thickness (hydrophobic mismatch), but also by an increase in protein/lipid molar ratio, showing the importance of interactions extending well beyond a single annulus of boundary lipids. The fluorescence data correlate with the pK(a) for the MI-to-MII transition of rhodopsin, where deprotonation of the retinylidene Schiff base occurs in conjunction with helical movements leading to activation of the photoreceptor. A more dispersed membrane environment optimizes formation of the MII conformation that results in visual function. A flexible surface model explains both the dispersal and activation of rhodopsin in terms of bilayer curvature deformation (strain) and hydrophobic solvation energy. The bilayer stress is related to the lateral pressure profile in terms of the spontaneous curvature and associated bending rigidity. Transduction of the strain energy (frustration) of the bilayer drives protein oligomerization and conformational changes in a coupled manner. Our findings illuminate the physical principles of membrane protein association due to chemically nonspecific interactions in fluid lipid bilayers. Moreover, they yield a conceptual framework for understanding how the tightly regulated lipid compositions of cellular membranes influence their protein-mediated functions.  相似文献   

15.
The human erythrocyte membrane skeleton may be an ionic gel   总被引:3,自引:0,他引:3  
In the first paper in this series (Stokke et al. Eur Biophys J 1986, 13:203-218) we developed the general theory of the mechanochemical properties and the elastic free energy of the protein gel--lipid bilayer membrane model. Here we report on an extensive numerical analysis of the human erythrocyte shapes and shape transformations predicted by this new cell membrane model. We have calculated the total elastic free energy of deformation of four different cell shape classes: disc-shaped cells, cup-shaped cells, crenated cells, and cells with membrane invaginations. We find that which of these shape classes is favoured depends strongly on the spectrin gel osmotic tension, IIGu, and the surface tensions, IIEu and IIPu, of the extracellular and protoplasmic halves of the membrane lipid bilayer, respectively. For constant ratio IIEu/IIPu greater than O large negative or positive values of IIGu favour respectively the crenated and invaginated cell shape classes. For small absolute values of IIGu, IIEu, and IIPu, biconcave or cup-shaped cells are the stable ones. Our numerical analysis shows that the higher the membrane skeleton compressibility is, the smaller are the values of IIGu needed to induce cell shape transformation. We find that the stable and metastable shapes of discocytes and stomatocytes generally depend both on the shape of the stressfree membrane skeleton and the membrane skeleton compressibility.  相似文献   

16.
Gramicidin is a helical peptide, 15 residues in length, which dimerizes to form ion-conducting channels in lipid bilayers. Here we report calculations of its free energy of transfer from the aqueous phase into bilayers of different widths. The electrostatic and nonpolar contributions to the desolvation free energy were calculated using implicit solvent models, in which gramicidin was described in atomic detail and the hydrocarbon region of the membrane was described as a slab of hydrophobic medium embedded in water. The free energy penalties from the lipid perturbation and membrane deformation effects, and the entropy loss associated with gramicidin immobilization in the bilayer, were estimated from a statistical thermodynamic model of the bilayer. The calculations were carried out using two classes of experimentally observed conformations: a head-to-head dimer of two single-stranded (SS) beta-helices and a double-stranded (DS) intertwined double helix. The calculations showed that gramicidin is likely to partition into the bilayer in all of these conformations. However, the SS conformation was found to be significantly more stable than the DS in the bilayer, in agreement with most of the experimental data. We tested numerous transmembrane and surface orientations of gramicidin in bilayers of various widths. Our calculations indicate that the most favorable orientation is transmembrane, which is indeed to be expected from a channel-forming peptide. The calculations demonstrate that gramicidin insertion into the membrane is likely to involve a significant deformation of the bilayer to match the hydrophobic width of the peptide (22 A), again in good agreement with experimental data. Interestingly, deformation of the bilayer was induced by all of the gramicidin conformations.  相似文献   

17.
Lipid bilayers represent a fascinating class of biomaterials whose properties are altered by changes in pressure or temperature. Functions of cellular membranes can be affected by nonspecific lipid-protein interactions that depend on bilayer material properties. Here we address the changes in lipid bilayer structure induced by external pressure. Solid-state 2H NMR spectroscopy of phospholipid bilayers under osmotic stress allows structural fluctuations and deformation of membranes to be investigated. We highlight the results from NMR experiments utilizing pressure-based force techniques that control membrane structure and tension. Our 2H NMR results using both dehydration pressure (low water activity) and osmotic pressure (poly(ethylene glycol) as osmolyte) show that the segmental order parameters (S(CD)) of DMPC approach very large values of ≈ 0.35 in the liquid-crystalline state. The two stresses are thermodynamically equivalent, because the change in chemical potential when transferring water from the interlamellar space to the bulk water phase corresponds to the induced pressure. This theoretical equivalence is experimentally revealed by considering the solid-state 2H NMR spectrometer as a virtual osmometer. Moreover, we extend this approach to include the correspondence between osmotic pressure and hydrostatic pressure. Our results establish the magnitude of the pressures that lead to significant bilayer deformation including changes in area per lipid and volumetric bilayer thickness. We find that appreciable bilayer structural changes occur with osmotic pressures in the range of 10-100 atm or lower. This research demonstrates the applicability of solid-state 2H NMR spectroscopy together with bilayer stress techniques for investigating the mechanism of pressure sensitivity of membrane proteins.  相似文献   

18.
Biological membranes are elastic media in which the presence of a transmembrane protein leads to local bilayer deformation. The energetics of deformation allow two membrane proteins in close proximity to influence each other's equilibrium conformation via their local deformations, and spatially organize the proteins based on their geometry. We use the mechanosensitive channel of large conductance (MscL) as a case study to examine the implications of bilayer-mediated elastic interactions on protein conformational statistics and clustering. The deformations around MscL cost energy on the order of 10 kBT and extend ~3 nm from the protein edge, as such elastic forces induce cooperative gating, and we propose experiments to measure these effects. Additionally, since elastic interactions are coupled to protein conformation, we find that conformational changes can severely alter the average separation between two proteins. This has important implications for how conformational changes organize membrane proteins into functional groups within membranes.  相似文献   

19.
A statistical mechanical model of a bilayer of dipalmitoyl-3-sn-phosphatidylcholine molecules in equilibrium with an aqueous phase saturated with an n-alkane is presented. A mean-field approach developed in previous work on a solventless bilayer (Gruen, Biochim. Biophys. Acta. 595:161--183, 1980) is extended to allow alkane chains to exist in the hydrophobic core of the membrane. As the alkane chains are chemically similar to the lipid chains, much of the analysis follows directly from the solventless model. Novel features of the present model are the inclusion of (a) a term which models the free energy cost of creating space for alkane conformations, (b) a term which constrains the chains to pack evenly in the hydrophobic region of the membrane, and (c) a term which estimates the free energy of mixing of the lipid and alkane molecules in the plane of the bilayer. On uptake of alkane, the dimensions of the bilayer increase. Allowance is made for an increase in thickness and/or an increase in area per lipid. A thermodynamic framework is established which allows evaluation of the free energy of a bilayer of arbitrary dimensions with a view to predicting the equilibrium structure.  相似文献   

20.
Mechanism of alamethicin insertion into lipid bilayers.   总被引:8,自引:6,他引:2       下载免费PDF全文
K He  S J Ludtke  W T Heller    H W Huang 《Biophysical journal》1996,71(5):2669-2679
Alamethicin adsorbs on the membrane surface at low peptide concentrations. However, above a critical peptide-to-lipid ratio (P/L), a fraction of the peptide molecules insert in the membrane. This critical ratio is lipid dependent. For diphytanoyl phosphatidylcholine it is about 1/40. At even higher concentrations P/L > or = 1/15, all of the alamethicin inserts into the membrane and forms well-defined pores as detected by neutron in-plane scattering. A previous x-ray diffraction measurement showed that alamethicin adsorbed on the surface has the effect of thinning the bilayer in proportion to the peptide concentration. A theoretical study showed that the energy cost of membrane thinning can indeed lead to peptide insertion. This paper extends the previous studies to the high-concentration region P/L > 1/40. X-ray diffraction shows that the bilayer thickness increases with the peptide concentration for P/L > 1/23 as the insertion approaches 100%. The thickness change with the percentage of insertion is consistent with the assumption that the hydrocarbon region of the bilayer matches the hydrophobic region of the inserted peptide. The elastic energy of a lipid bilayer including both adsorption and insertion of peptide is discussed. The Gibbs free energy is calculated as a function of P/L and the percentage of insertion phi in a simplified one-dimensional model. The model exhibits an insertion phase transition in qualitative agreement with the data. We conclude that the membrane deformation energy is the major driving force for the alamethicin insertion transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号