首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 315 毫秒
1.
In the process of oligomeric structure formation through a mechanism of three-dimensional domain swapping, one domain of a monomeric protein is replaced by the same domain from an identical monomer. The swapped domain can represent an entire tertiary globular domain or an element of secondary protein structure, such as an -helix or a -strand. Different examples of three-dimensional domain swapping are reviewed; the functional importance of this phenomenon and its role in the development of new properties by some proteins in the process of evolution are considered. The contribution of three-dimensional domain swapping to the formation of linear protein polymers and amyloids is discussed.  相似文献   

2.
Classification is central to many studies of protein structure, function, and evolution. This article presents a strategy for classifying protein three-dimensional structures. Methods for and issues related to secondary structure, domain, and class assignment are discussed, in addition to methods for the comparison of protein three-dimensional structures. Strategies for assigning protein domains to particular folds and homologous superfamilies are then described in the context of the currently available classification schemes. Two examples (adenylate cyclase/DNA polymerase and glycogen phosphorylase/β-glucosyltransferase) are presented to illustrate problems associated with protein classification.  相似文献   

3.
4.
5.

Background

The analysis of correlation in alignments generates a matrix of predicted contacts between positions in the structure and while these can arise for many reasons, the simplest explanation is that the pair of residues are in contact in a three-dimensional structure and are affecting each others selection pressure. To analyse these data, A dynamic programming algorithm was developed for parsing secondary structure interactions in predicted contact maps.

Results

The non-local nature of the constraints required an iterated approach (using a “frozen approximation”) but with good starting definitions, a single pass was usually sufficient. The method was shown to be effective when applied to the transmembrane class of protein and error tolerant even when the signal becomes degraded. In the globular class of protein, where the extent of interactions are more limited and more complex, the algorithm still behaved well, classifying most of the important interactions correctly in both a small and a large test case. For the larger protein, this involved examples of the algorithm apportioning parts of a single large secondary structure element between two different interactions.

Conclusions

It is expected that the method will be useful as a pre-processor to coarse-grained modelling methods to extend the range of protein tertiary structure prediction to larger proteins or to data that is currently too ’noisy’ to be used by current residue-based methods.
  相似文献   

6.
Animal toxins are small proteins built on the basis of a few disulfide bonded frameworks. Because of their high variability in sequence and biologic function, these proteins are now used as templates for protein engineering. Here we report the extensive characterization of the structure and dynamics of two toxin folds, the "three-finger" fold and the short alpha/beta scorpion fold found in snake and scorpion venoms, respectively. These two folds have a very different architecture; the short alpha/beta scorpion fold is highly compact, whereas the "three-finger" fold is a beta structure presenting large flexible loops. First, the crystal structure of the snake toxin alpha was solved at 1.8-A resolution. Then, long molecular dynamics simulations (10 ns) in water boxes of the snake toxin alpha and the scorpion charybdotoxin were performed, starting either from the crystal or the solution structure. For both proteins, the crystal structure is stabilized by more hydrogen bonds than the solution structure, and the trajectory starting from the X-ray structure is more stable than the trajectory started from the NMR structure. The trajectories started from the X-ray structure are in agreement with the experimental NMR and X-ray data about the protein dynamics. Both proteins exhibit fast motions with an amplitude correlated to their secondary structure. In contrast, slower motions are essentially only observed in toxin alpha. The regions submitted to rare motions during the simulations are those that exhibit millisecond time-scale motions. Lastly, the structural variations within each fold family are described. The localization and the amplitude of these variations suggest that the regions presenting large-scale motions should be those tolerant to large insertions or deletions.  相似文献   

7.

Background

Prions are infectious proteins propagating as self-perpetuating amyloid polymers. The [Het-s] prion of Podospora anserina is involved in a cell death process associated with non-self recognition. The prion forming domain (PFD) of HET-s adopts a β-solenoid amyloid structure characterized by the two fold repetition of an elementary triangular motif. [Het-s] induces cell death when interacting with HET-S, an allelic variant of HET-s. When templated by [Het-s], HET-S undergoes a trans-conformation, relocates to the cell membrane and induces toxicity.

Methodology/Principal Findings

Here, comparing HET-s homologs from different species, we devise a consensus for the HET-s elementary triangular motif. We use this motif to screen genomic databases and find a match to the N-terminus of NWD2, a STAND protein, encoded by the gene immediately adjacent to het-S. STAND proteins are signal transducing ATPases which undergo ligand-induced oligomerisation. Homology modelling predicts that the NWD2 N-terminal region adopts a HET-s-like fold. We propose that upon NWD2 oligomerisation, these N-terminal extensions adopt the β-solenoid fold and template HET-S to adopt the amyloid fold and trigger toxicity. We extend this model to a putative prion, the σ infectious element in Nectria haematococca, because the s locus controlling propagation of σ also encodes a STAND protein and displays analogous features. Comparative genomic analyses indicate evolutionary conservation of these STAND/prion-like gene pairs, identify a number of novel prion candidates and define, in addition to the HET-s PFD motif, two distinct, novel putative PFD-like motifs.

Conclusions/Significance

We suggest the existence, in the fungal kingdom, of a widespread and evolutionarily conserved mode of signal transduction based on the transmission of an amyloid-fold from a NOD-like STAND receptor protein to an effector protein.  相似文献   

8.
Protein disulfide isomerase (PDI) is a multifunctional protein of the endoplasmic reticulum, which catalyzes the formation, breakage and rearrangement of disulfide bonds during protein folding. It consists of four domains designated a, b, b and a. Both a and a domains contain an active site with the sequence motif -Cys-Gly-His-Cys- involved directly in thiol-disulfide exchange reactions. As expected these domains have structures very similar to the ubiquitous redox protein thioredoxin. A low-resolution NMR structure of the b domain revealed that this domain adopts a fold similar to the PDI a domain and thioredoxin [Kemmink, J., Darby, N.J., Dijkstra, K., Nilges, M. and Creighton, T.E. (1997) Curr. Biol., 7, 239–245]. A refined ensemble of solution structures based on the input of 1865 structural restraints shows that the structure of PDI b is well defined throughout the complete protein except for about 10 residues at the C-terminus of the sequence. 15N relaxation data show that these residues are disordered and not part of this structural domain. Therefore the domain boundaries of PDI can now be fixed with reasonable precision. Structural comparison of the PDI b domain with thioredoxin and PDI a reveals several features important for thiol-disulfide exchange activity.  相似文献   

9.
Complement control protein (CCP) modules, or short consensus repeats (SCR), exist in a wide variety of complement and adhesion proteins, principally the selectins. We have predicted the three-dimensional structure of a CCP module based upon secondary structural information derived by two-dimensional NMR [Barlow et al. (1991), Biochemistry 30, 997–1004]. Accordingly, the CCP is predicted to contain seven -strands with extensive hydrogen-bonding interactions, and shows a compact, globular structure. Comparison of this model to the X-ray structure of a kringle domain suggests that the CCP unit is more compact than a kringle structure, and that despite their similarities in size and disulfide bond format, the two are not homologous. Although the function of CCP domains is unknown, it is hoped that the structural model presented herein will facilitate further inquiry into how they contribute to so many systems of biological importance.  相似文献   

10.
Raman optical activity, which can be measured as a small circularly polarized component in Raman-scattered light from chiral molecules, holds much promise for studying a large range of biomolecules in aqueous solution. Among other things, it provides information about motif and fold, as well as secondary structure, of proteins; the solution structure of carbohydrates; and the structure of the polypeptide and carbohydrate components of intact glycoproteins. In addition, new insights into the structural elements present in unfolded protein sequences, and the structure of the protein and nucleic acid components of intact viruses can be obtained. Ab initio quantum-chemical simulations of observed Raman optical activity spectra provide the complete three-dimensional structure of small biomolecules. Raman optical activity measurements are now routine thanks to the availability of a commercial instrument based on a novel design.  相似文献   

11.
Newly determined protein structures are classified to belong to a new fold, if the structures are sufficiently dissimilar from all other so far known protein structures. To analyze structural similarities of proteins, structure alignment tools are used. We demonstrate that the usage of nonsequential structure alignment tools, which neglect the polypeptide chain connectivity, can yield structure alignments with significant similarities between proteins of known three-dimensional structure and newly determined protein structures that possess a new fold. The recently introduced protein structure alignment tool, GANGSTA, is specialized to perform nonsequential alignments with proper assignment of the secondary structure types by focusing on helices and strands only. In the new version, GANGSTA+, the underlying algorithms were completely redesigned, yielding enhanced quality of structure alignments, offering alignment against a larger database of protein structures, and being more efficient. We applied DaliLite, TM-align, and GANGSTA+ on three protein crystal structures considered to be novel folds. Applying GANGSTA+ to these novel folds, we find proteins in the ASTRAL40 database, which possess significant structural similarities, albeit the alignments are nonsequential and in some cases involve secondary structure elements aligned in reverse orientation. A web server is available at http://agknapp.chemie.fu-berlin.de/gplus for pairwise alignment, visualization, and database comparison.  相似文献   

12.

Background  

Structural properties of proteins such as secondary structure and solvent accessibility contribute to three-dimensional structure prediction, not only in the ab initio case but also when homology information to known structures is available. Structural properties are also routinely used in protein analysis even when homology is available, largely because homology modelling is lower throughput than, say, secondary structure prediction. Nonetheless, predictors of secondary structure and solvent accessibility are virtually always ab initio.  相似文献   

13.
The primary structure of a protein molecule comprises a linear chain of amino acid residues. Certain parts of this linear chain are unique in nature and function. They can be classified under different categories and their roles studied in detail. Two such unique categories are the palindromic sequences and the Single Amino Acid Repeats (SAARs), which plays a major role in the structure, function and evolution of the protein molecule. In spite of their presence in various protein sequences, palindromes have not yet been investigated in detail. Thus, to enable a comprehensive understanding of these sequences, a computing engine, PPS, has been developed. The users can search the occurrences of palindromes and SAARs in all the protein sequences available in various databases and can view the three-dimensional structures (in case it is available in the known three-dimensional protein structures deposited to the Protein Data Bank) using the graphics plug-in Jmol. The proposed server is the first of its kind and can be freely accessed through the World Wide Web.

Availability

URL http://pranag.physics.iisc.ernet.in/pps/  相似文献   

14.
Does a protein's secondary structure determine its three-dimensional fold? This question is tested directly by analyzing proteins of known structure and constructing a taxonomy based solely on secondary structure. The taxonomy is generated automatically, and it takes the form of a tree in which proteins with similar secondary structure occupy neighboring leaves. Our tree is largely in agreement with results from the structural classification of proteins (SCOP), a multidimensional classification based on homologous sequences, full three-dimensional structure, information about chemistry and evolution, and human judgment. Our findings suggest a simple mechanism of protein evolution.  相似文献   

15.
Summary A simple technique for identifying protein secondary structures through the analysis of backbone 13C chemical shifts is described. It is based on the Chemical-Shift Index [Wishart et al. (1992) Biochemistry, 31, 1647–1651] which was originally developed for the analysis of 1H chemical shifts. By extending the Chemical-Shift Index to include 13C, 13C and carbonyl 13C chemical shifts, it is now possible to use four independent chemical-shift measurements to identify and locate protein secondary structures. It is shown that by combining both 1H and 13C chemical-shift indices to produce a consensus estimate of secondary structure, it is possible to achieve a predictive accuracy in excess of 92%. This suggests that the secondary structure of peptides and proteins can be accurately obtained from 1H and 13C chemical shifts, without recourse to NOE measurements.Supplementary material is available in the form of a 10-page table (Table S1) describing the exact location of secondary structures in all 20 proteins as determined using the methods described in this paper. Requests for Table S1 should be directed to the authors.  相似文献   

16.
Previous sequence analyses have suggested the existence of two distinct classes of aminoacyl-tRNA synthetase. The partition was established on the basis of exclusive sets of sequence motifs (Eriani et al. [1990] Nature 347:203–306). X-ray studies have now well defined the structural basis of the two classes: the class I enzymes share with dehydrogenases and kinases the classic nucleotide binding fold called the Rossmann fold, whereas the class II enzymes possess a different fold, not found elsewhere, built around a six-stranded antiparallel -sheet. The two classes of synthetases catalyze the same global reaction that is the attachment of an amino acid to the tRNA, but differ as to where on the terminal adenosine of the tRNA the amino acid is placed: class I enzymes act on the 2 hydroxyl whereas the class II enzymes prefer the 3 hydroxyl group. The three-dimensional structure of aspartyl-tRNA synthetase from yeast, a typical class II enzyme, is described here, in relation to its function. The crucial role of the sequence motifs in substrate binding and enzyme structure is high-lighted. Overall these results underline the existence of an intimate evolutionary link between the aminoacyl-tRNA synthetases, despite their actual structural diversity.Based on a presentation made at a workshop— Aminoacyl-tRNA Synthetases and the Evolution of the Genetic Code—held at Berkeley, CA, July 17–20, 1994 Correspondence to: G. Eriani  相似文献   

17.

Background

Protein sequence alignment is essential for a variety of tasks such as homology modeling and active site prediction. Alignment errors remain the main cause of low-quality structure models. A bioinformatics tool to refine alignments is needed to make protein alignments more accurate.

Results

We developed the SFESA web server to refine pairwise protein sequence alignments. Compared to the previous version of SFESA, which required a set of 3D coordinates for a protein, the new server will search a sequence database for the closest homolog with an available 3D structure to be used as a template. For each alignment block defined by secondary structure elements in the template, SFESA evaluates alignment variants generated by local shifts and selects the best-scoring alignment variant. A scoring function that combines the sequence score of profile-profile comparison and the structure score of template-derived contact energy is used for evaluation of alignments. PROMALS pairwise alignments refined by SFESA are more accurate than those produced by current advanced alignment methods such as HHpred and CNFpred. In addition, SFESA also improves alignments generated by other software.

Conclusions

SFESA is a web-based tool for alignment refinement, designed for researchers to compute, refine, and evaluate pairwise alignments with a combined sequence and structure scoring of alignment blocks. To our knowledge, the SFESA web server is the only tool that refines alignments by evaluating local shifts of secondary structure elements. The SFESA web server is available at http://prodata.swmed.edu/sfesa.  相似文献   

18.
Human calcitonin (hCT) is a C-terminus -amidated peptide hormone consisting of 32 amino acids. The amidated structure is essential for its biological activities, and the C-terminal-glycine-extended precursor peptide, hCT[G], is converted to bioactive hCT by a C-terminus--amidating enzyme. An efficient production method is described for the hCT[G] peptide, as a part of the fusion protein consisting of a modified E. coli -galactosidase, linker amino acids and hCT[G]. Stable inclusion bodies of the fusion protein in E. coli were expressed by focusing on the amino acid charge, and the fusion protein was modified by inserting a basic amino acid sequence into its linker region. This modification greatly affected the formation of inclusion bodies. E. coli strain W3110/pG97S4DhCT [G]R4 could produce a large amount of stable inclusion bodies, and the hCT[G] peptide was released quantitatively from the fusion protein by S. aureus V8 protease. This enabled a large-scale production method to be established for the hCT[G] precursor peptide in E. coli to produce mature hCT.  相似文献   

19.
We introduce a notion of attractor adapted to dynamical processes as they are studied in community-ecological models and their computer simulations. This attractor concept is modeled after that of Ruelle as presented in [11] and [12]. It incorporates the fact that in an immigration-free community populations can go extinct at low values of their densities.Mathematics Subject Classification (2000):37b20, 37c50, 37c70  相似文献   

20.
A method for incorporating dipolar coupling restraints into structure calculations is described which follows closely on methodology that has been recently presented for orienting peptide planes using dipolar couplings [Mueller et al. (2000) J. Mol. Biol., 300, 197–212] and is specifically developed for use in cases of an axially symmetric alignment tensor. Modeling studies on an all -helical protein, farnesyl diphosphate synthase, establish the utility of the approach. A global fold of the 370-residue maltose binding protein in complex with -cyclodextrin is obtained from experimentally derived restraints. The average pairwise rmsd values between the N- and C-terminal domains in this NMR structure and the corresponding regions in the X-ray structure of the protein are 2.8 and 3.1 Å, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号