首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
The genetic diversity and population structure of the vulnerable Chinese Egret (Egretta eulophotes) were surveyed in the present study from three archipelagoes that cover the most southerly to the very northerly parts of the Chinese distribution range of this species, using a 433-bp fragment of the mitochondrial control region (CR). Among 90 individual samples, 31 different haplotypes were defined by 30 polymorphic sites. Overall haplotype diversity, nucleotide diversity and mean sequence divergence (p-distance) of this egret were 0.920, 0.0088 and 1.11%, respectively. NJ tree and parsimony network for the CR haplotypes of the Chinese Egret showed little genetic structure, and analysis of molecular variance indicated low but significant genetic differentiation (haplotype-based ΦST = 0.03267, P < 0.05 and distance-based ΦST = 0.04194, P < 0.05) among populations. The significant Fu’s F S tests (Fu’s F S  = −16.946, P < 0.01) and mismatch distribution analysis (τ = 4.463, SSD = 0.0081, P = 0.12) suggested that the low genetic differentiation and little geographical structure of the genetic differentiation might be explained by the population expansion. The Mantel test (haplotype-based F ST, r = 0.639, P = 0.34 and distance-based F ST, r = 0.947, P = 0.15) suggest that the significant genetic differentiation among populations was likely due to isolation by distance.  相似文献   

2.
Understanding patterns of connectivity in marine species is vital for the management and conservation of marine biodiversity. Here, the population genetic structure of a common and abundant tropical reef damselfish, Pomacentrus amboinensis, is reported. Using nine polymorphic microsatellite loci, the genetic structure at both small (i.e., around Lizard Island, Great Barrier Reef [GBR]) and large (GBR and Papua New Guinea [PNG]) spatial and temporal scales (2–1,600 km; 28 days– 6 years; n = 1,119) was analyzed. Temporal analyses found no evidence of genetic differentiation within or between Lizard Island recruitment pulses (R ST = −0.001, P = 0.788), or corresponding established adult populations separated by 6 years of sampling (R ST = 0.003, P = 0.116). The spatial analysis revealed that P. amboinensis populations are largely panmictic on the GBR and eastern PNG (R ST = 0.001, P = 0.913), the only genetic discontinuity being between Kimbe Bay to the north of PNG and all populations south of PNG (R ST = 0.077, P < 0.0001). Despite assumed high levels of self-recruitment based on previous tagging studies (15–60%), data presented here indicate that enough recruits are dispersing to impede the evolution of genetic structure over distances as great as 1,600 kms in this species. Data therefore indicate that the temporal genetic stability recorded here is maintained by high levels of gene flow.  相似文献   

3.
The present study investigated the fine‐scale population genetic structure of sympatric asterinid sea stars with contrasting modes of larval development (benthic versus pelagic). Parvulastra exigua lacks a dispersive life phase yet is one of the worlds most widely distributed and abundant sea stars, whereas Meridiastra calcar, a sea star with a dispersive larva, has a more limited regional scale distribution. Populations of P. exigua sampled from tide pools on three adjacent headlands showed significant genetic substructure (mitochodrial DNA control region) at fine spatial scales (tide pools < 300 m apart: FST = 0.249, P < 0.01; headlands 5–15 km apart: FST = 0.125, P = 0.04). As expected, M. calcar populations sampled from the same headlands did not exhibit significant genetic structuring (FST = 0.029, P = 0.14). The life‐history traits of P. exigua, a mixed mating system (selfing + outcrossing), pseudocopulation among closely‐related conspecifics, and an entirely benthic life cycle with a philopatric larva, undoubtedly influence its strong genetic structure across fine spatial scales. Localized genetic structure, especially at the very fine‐scale of tide pools, would not be detected in the more typical regional scale approaches adopted by most studies of marine invertebrate populations. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, ●●, ●●–●●.  相似文献   

4.
Termite alates are thought to be poor active flyers, and this should lead to considerable genetic differentiation on small spatial scales. However, using four microsatellite loci for the termite Macrotermes michaelseni we found low values of genetic differentiation (FST) across a spatial scale of even more than 50 km. Genetic differentiation between populations increased with spatial distance up to 50 km. Furthermore, up to this distance, the scatter around the linear regression of genetic differentiation versus spatial distance increased with spatial distance. This suggests that across such spatial distances gene flow and genetic drift are of about equal importance, and near equilibrium. Using a regional FST as well as the distance between populations with non-significant FST-values (up to 25 km), gene flow is sufficiently high so that populations may be regarded as panmictic on spatial scales of 25 to 50 km. The apparent contradiction between dispersal distances observed in the field and estimates of gene flow from genetic markers may be due to the masses of swarming alates. Assuming a leptokurtic distribution of dispersal distances, atleast some alates are expected to travel considerable distances, most likely by passive drift. Received 25 January 2005; revised 11 April 2005; accepted 26 April 2005.  相似文献   

5.
The Japanese wood pigeon (Columba janthina) is endemic to the islands of East Asia and it is included in the Japanese and Asian Red Lists because of its narrow habitat range that is restricted to mature forests on small islands and because of the destruction of these habitats. We examined the genetic structure of Columba janthina by studying 463 base pairs of the mitochondrial control region sequences. We analyzed 154 samples from eight populations and identified 27 haplotypes. Three population groups were identified based on the pairwise ΦST values. A substantial gene flow, as reflected by the low and non-significant ΦST values, is maintained among the northern group that includes six populations found on the Okinawa, Tokara, Goto, Setouchi, Oki, and Izu islands. In contrast, the southeastern group found on the Ogasawara Islands had large ΦST values with every population from other regions (0.910 < ΦST < 0.962). The southwestern group found on the Sakishima Islands also had significant but small ΦST values with every population from the northern group (0.081 < ΦST < 0.205). The Mantel test showed a highly significant correlation between the ΦST values and the route length of the habitat network, as well as the linear distance with correction of the habitat gap effect, indicating the importance of the closely connected structure of the habitats. The three groups mentioned above could be considered as independent management units, and the southeastern group has the highest conservation priority due to its narrow distribution range and small population size. Electronic Supplementary Material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

6.
Cedrus libani of Lebanon is a valuable natural resource and the dominant species in its natural ecosystem. Intense and diverse anthropogenic pressures over historical times raised concerns about its genetic vigor and continued survival. Our investigation of the genetic diversity included samples from all remnant natural populations. Assessment of the genetic diversity using random amplified polymorphic DNA markers revealed the persistence of considerable variation distributed within populations with low population differentiation corroborated by Bayesian and analysis of molecular variance estimates (G ST = 0.07, Φ ST = 0.09). Individual assignment tests were carried out to investigate measures of gene flow. Inferences concluded that this natural heritage is not currently threatened by inbreeding or by random genetic drift. Correlation studies investigated possible effects of spatial distribution and environmental conditions on genetic structure. A climatic trend corresponding to a temperature–humidity gradient correlated significantly with the level of genetic diversity, while the edaphic variation did not.  相似文献   

7.
The genetic variation within and among eight Tunisian natural populations of Lavandula multifida L., from different bioclimatic zones was assessed using random amplified polymorphic DNA (RAPDs). Of a total of 97 generated bands from seven selected primers, 84 bands were polymorphic. The genetic diversity within a population was high and varied according to the populations (0.308 < H’ < 0.459) without relationships to altitudes or pluviothermic indices of sites. The genetic differentiation among populations was high (GST = 0.395 and ΦST = 0.318). All population pairs were significantly differentiated. Among populations, within ecological groups genetic structure was high (0.219); whilst among them it was low (ΦCT = 0.049; P < 0.05). The correlation between ΦST and geographic distance matrices among pairs of populations was not significant, suggesting that genetic connectivity between populations has a stochastic component at all spatial scales. The neighbour‐joining cluster analysis showed that individuals from each population clustered together. UPGMA cluster analysis showed that population groupings are not strictly in accordance with bioclimates or geographic location. The genetic differentiation in L. multifida could have occurred at local scales because of genetic drift. Efforts should be made to protect all populations. The maintenance of substantial population size should be initiated via fencing and controlling collection to restore the regeneration of populations.  相似文献   

8.
High levels of genetic variation enable species to adapt to changing environments and provide plant breeders with the raw materials necessary for artificial selection. In the present study, six AFLP primer pairs were used to assess the genetic diversity of Desmodium triflorum (L.) DC. from 12 populations in South China. A high percentage of polymorphic loci (P = 76.16%) and high total gene diversity (H T = 0.310) were found, indicating that the genetic diversity of D. triflorum is high at the species level. Genetic diversity was also relatively high at the population level (P = 55.85%, H e = 0.230). The coefficient of gene differentiation among populations (G ST) was 0.255, indicating that while most genetic diversity resided within populations, there was also considerable differentiation among populations. AMOVA also indicated 24.29% of the total variation to be partitioned among populations (ΦST = 0.243). UPGMA clustering analysis based on genetic distances showed that the 12 populations could be separated into three subgroups: an eastern, a western, and a central-southern subgroup. However, a Mantel test revealed no significant correlation (r = 0.286, p = 0.983) between the geographical distances and genetic distances separating these populations; mountain barriers to gene flow and human disturbance may have confounded these correlations. The present study has provided some fundamental genetic data that will be of use in the exploitation of D. triflorum.  相似文献   

9.
We evaluated the genetic structure of 16 Betula maximowicziana populations in the Chichibu mountain range, central Japan, located within a 25-km radius; all but two populations were at altitudes of 1,100–1,400 m. The results indicate the effects of geographic topology on the landscape genetic structure of the populations and should facilitate the development of local-scale strategies to conserve and manage them. Analyses involving 11 nuclear simple sequence repeat loci showed that most populations had similar intrapopulation genetic diversity parameters. Population differentiation (F ST = 0.021, GST = 0.033) parameters for the populations examined were low but were relatively high compared to those obtained in a previous study covering populations in a much larger area with a radius of approximately 1,000 km (F ST = 0.062, GST = 0.102). Three populations (Iriyama, Kanayamasawa, and Nishizawa) were differentiated from the other populations by Monmonier’s and spatial analysis of molecular variance algorithms or by STRUCTURE analysis. Since a high mountain ridge (nearly 2,000 m) separates the Kanayamasawa and Nishizawa populations from the other 14 populations and the Kanayamasawa and Nishizawa populations are themselves separated by another mountain ridge, the genetic structure appears to be partly due to mountain ridges acting as genetic barriers and restricting gene flow. However, the Iriyama population is genetically different but not separated by any clear geographic barrier. These results show that the landscape genetic structure is complex in the mountain range and we need to pay attention, within landscape genetic studies and conservation programs, to geographic barriers and local population differentiation.  相似文献   

10.
Recent studies showing consequences of species’ genetic diversity on ecosystem performance raise the concern of how key ecosystem species are genetically structured. The bladder wrack Fucus vesiculosus L. is a dominant species of macroalga in the northern Atlantic, and it is particularly important as a habitat‐forming species in the Baltic Sea. We examined the genetic structure of populations of F. vesiculosus with a hierarchical approach from a within‐shore scale (10 m) to a between‐seas scale (Baltic Sea–Skagerrak, 800 km). Analysis of five microsatellite loci showed that population differentiation was generally strong (average FST = 12%), being significant at all spatial scales investigated (101, 103, 104–5, 106 m). Genetic differentiation between seas (Baltic Sea and Skagerrak) was substantial. Nevertheless, the effects of isolation by distance were stronger within seas than between seas. Notably, Baltic summer‐reproducing populations showed a strong within‐sea, between‐area (70 km) genetic structure, while Baltic autumn‐reproducing populations and Skagerrak summer‐reproducing populations revealed most genetic diversity between samples within areas (<1 km). Despite such differences in overall structure, Baltic populations of summer‐ and autumn‐reproducing morphs did not separate in a cluster analysis, indicating minor, if any, barriers to gene flow between them. Our results have important implications for management and conservation of F. vesiculosus, and we raise a number of concerns about how genetic variability should be preserved within this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号