首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 972 毫秒
1.
This study shows results of nitrogen and phosphorus removal by microalgae (tertiary treatment) in a prototype of tubular photobioreactor tested under controlled and uncontrolled conditions. The wastewater was the supernatant coming from a secondary settler of a municipal wastewater activated sludge treatment plant without nitrification and denitrification units. The algal biomass was directly selected from the supernatant and it was principally composed of genus Scenedesmus (autochthonous algae). All the experiments evaluated both nitrogen and phosphorus removal and biomass and lipid production. A satisfactory nutrients removal - about 99.9% for the nitrogen and phosphorus - and a specific biomass productivity of 0.25 g/l d have been obtained in the indoor photobioreactor; less satisfactory results have been reached in the outdoor photobioreactor because of ambient condition instability and limiting nutrients concentration.  相似文献   

2.
Maximizing algae production in a wastewater treatment process can aid in the reduction of soluble nitrogen and phosphorus concentrations in the wastewater. If harvested, the algae-based biomass offers the added benefit as feedstock for the production of biofuels and bioproducts. However, difficulties in harvesting, concentrating, and dewatering the algae-based biomass have limited the development of an economically feasible treatment and production process. When algae-based biomass is grown as a surface attached biofilm as opposed to a suspended culture, the biomass is naturally concentrated and more easily harvested. This can lead to less expensive removal of the biomass from wastewater, and less expensive downstream processing in the production of biofuels and bioproducts. In this study, a novel rotating algal biofilm reactor (RABR) was designed, built, and tested at bench (8 L), medium (535 L), and pilot (8,000 L) scales. The RABR was designed to operate in the photoautotrophic conditions of open tertiary wastewater treatment, producing mixed culture biofilms made up of algae and bacteria. Growth substrata were evaluated for attachment and biofilm formation, and an effective substratum was discovered. The RABR achieved effective nutrient reduction, with average removal rates of 2.1 and 14.1 g m(-2) day(-1) for total dissolved phosphorus and total dissolved nitrogen, respectively. Biomass production ranged from 5.5 g m(-2) day(-1) at bench scale to as high as 31 g m(-2) day(-1) at pilot scale. An efficient spool harvesting technique was also developed at bench and medium scales to obtain a concentrated product (12-16% solids) suitable for further processing in the production of biofuels and bioproducts.  相似文献   

3.
The effects on edaphic algae associated with a pure stand of the cord grass, Spartina alterniflora Loisel of manipulating light intensity and additions of inorganic nitrogen and phosphorus as fertilizers to the marsh surface have been investigated for one year. The standing crop of edaphic algae as measured by chlorophyll a production was limited only by phosphorus supplies during fall and winter, by both phosphorus and nitrogen in spring, and only by nitrogen during the summer. Since the responses were in phase with the seasonal fluctuations in the concentration of nitrogen and phosphorus, it is concluded that the flood tide is the major source of nitrogen and phosphorus compounds for edaphic algal growth. Reduction in the quantity of light reaching the edaphic algae by Spartina cover is always a limiting factor for the standing crop. A gradient in the composition of the algal flora is directly related to light intensity, and indicates that this factor determines the relative contribution of diatoms and filamentous algae to the community. The interaction of light intensity and nutrients in regulating the production of edaphic algae and cord grass on the marsh under study over a yearly cycle has also been investigated.  相似文献   

4.
虾青素是自然界广泛存在的一种橘红色类胡萝卜素,广泛应用于食品、药品和化妆品行业。在虾青素的制备中,雨生红球藻是生产虾青素的最有效来源,目前提高虾青素产量的方式主要为提高生物量和产物合成率。目前已有大量研究针对生物量的优化,但依然存在改善空间。为此,尝试用城市生活污水作为培养基对雨生红球藻进行培养。结果表明,生活污水能促进雨生红球藻的生长,其产量是现有BG11培养基的2倍;虾青素的合成时期显著提前(P<0.05),且体内重金属含量未明显富集,处在安全浓度范围。此外,养藻后的城市生活污水中氮、磷含量显著降低(P<0.05),高氮、磷富余的情形得到有效改善。证实利用污水培养雨生红球藻的双重效应,一方面有利于积累藻类生物量,另一方面有助于净化水质,在经济效益和生态效益上具有极好的发展潜力。  相似文献   

5.
Algal biomass, C:N:P (carbon:nitrogen:phosphorus) ratios and APA (biomass specific alkaline phosphatase activity) were measured in benthic algal communities on living substrates (mussels and macrophytes) and on rocks and stones (epilithon) in three lakes of different trophy. Benthic algal communities on living substrates had lower C:N:P ratios than epilithon, whereas algal biomass was highest on rocks and stones. Benthic algal biomass increased with the trophic level of a lake despite an increase of C:N:P ratios in the benthic community. The differences in C:N:P ratios and algal biomass between lakes of different trophy were higher on inert substrates than on macrophytes and mussels, probably because algae on living substrates could compensate a poor nutrient supply from lake water with substrate nutrients. However, the substrate was not, as expected, the most important nutrient supply in the oligotrophic lake, but in the eutrophic lake. Therefore, differences between inert and living substrates in a single lake were highest in the eutrophic lake. APA values of the oligotrophic lake were very high especially for benthic algae on stones, indicating an ability of the community to take up nutrients from organic sources. In conclusion, living substrates were an important nutrient source for benthic algae and the importance of this nutrient supply did not decrease with increasing lake trophy.  相似文献   

6.
High rate algal ponds (HRAPs) are shallow, paddlewheel-mixed open raceway ponds that are an efficient and cost-effective upgrade for the conventional wastewater treatment ponds used by communities and farms the world over. HRAPs provide improved natural disinfection and nutrient removal and can be further enhanced by carbon dioxide (CO2) addition to promote algal growth which is often carbon limited. This paper discusses the construction and operation of a 5-ha demonstration HRAP system treating primary settled wastewater at the Christchurch wastewater treatment plant, New Zealand. The system consisted of four 1.25-ha HRAPs that were constructed from an existing conventional pond. Algae were harvested from the HRAP effluent in specially designed settlers, which concentrated the algal/bacterial biomass to 1–2% organic solids for conversion to bio-crude oil following dewatering. Performance data from the first 15?months of HRAP operation (without CO2 addition) are presented. The four demonstration HRAPs had reasonable replication of both treatment performance and algal/bacterial productivity with similar annual average wastewater treatment efficiency (~50% removal of BOD5, ~87% removal of fBOD5, ~65% removal of ammoniacal-N, ~19% removal of dissolved reactive phosphorus and ~2 log removal of Escherichia coli), algal species composition and algal/bacterial biomass production (~8?g?m?2?day ?1 volatile suspended solids). These results were in good agreement with the results for pilot-scale HRAP without CO2 addition in New Zealand. This study provides further indication of the potential for energy efficient and effective wastewater treatment using HRAP, while biofuel conversion of the harvested algal bacterial biomass could provide a valuable niche distributed energy source for local communities.  相似文献   

7.
Microalgae feedstock production can be integrated with wastewater and industrial sources of carbon dioxide. This study reviews the literature on algae grown on wastewater and includes a preliminary analysis of algal production based on anaerobic digestion sludge centrate from the Howard F. Curren Advanced Wastewater Treatment Plant (HFC AWTP) in Tampa, Florida and secondary effluent from the City of Lakeland wastewater treatment facilities in Lakeland, Florida. It was demonstrated that a mixed culture of wild algae species could successfully be grown on wastewater nutrients and potentially scaled to commercial production. Algae have demonstrated the ability to naturally colonize low-nutrient effluent water in a wetland treatment system utilized by the City of Lakeland. The results from these experiments show that the algae grown in high strength wastewater from the HFC AWTP are light-limited when cultivated indoor since more than 50% of the outdoor illumination is attenuated in the greenhouse. An analysis was performed to determine the mass of algae that can be supported by the wastewater nutrients (mainly nitrogen and phosphorous) available from the two Florida cities. The study was guided by the growth and productivity data obtained for algal growth in the photobioreactors in operation at the University of South Florida. In the analysis, nutrients and light are assumed to be limited, while CO2 is abundantly available. There is some limitation on land, especially since the HFC AWTP is located at the Port of Tampa. The temperature range in Tampa is assumed to be suitable for algal growth year round. Assuming that the numerous technical challenges to achieving commercial-scale algal production can be met, the results presented suggest that an excess of 71 metric tons per hectare per year of algal biomass can be produced. Two energy production options were considered; liquid biofuels from feedstock with high lipid content, and biogas generation from anaerobic digestion of algae biomass. The total potential oil volume was determined to be approximately 337,500 gallons per year, which may result in the annual production of 270,000 gallons of biodiesel when 80% conversion efficiency is assumed. This production level would be able to sustain approximately 450 cars per year on average. Potential biogas production was estimated to be above 415,000 kg/yr, the equivalent of powering close to 500 homes for a year.  相似文献   

8.
Nirupama Mallick 《Biometals》2002,15(4):377-390
This presentation comprises a review on the use of immobilized algae for wastewater nitrogen, phosphorus and metal removal purposes. Details of the use of immobilized algae, the techniques of immobilization and the effects of immobilization on cell function are included. Particularly relevant in their use for heavy metal removal from wastewaters; upon enriching the biomass in metal, can be recoverd, thereby providing economic advantages. The use of immobilized microalgae in these processes is very adequate and offers significant advantages in bioreactors. The future of this area of algal cell biotechnology is considered.  相似文献   

9.
城市生活废水用于产油微藻培养   总被引:10,自引:2,他引:8  
将废水与产油微藻培养结合起来,可以实现废水的无害化处理,还可为微藻的培养提供营养组分和大量水源。利用高产油栅藻,以城市生活废水为水源,在气泡柱式光反应器中,考察了添加不同营养组分对栅藻细胞的生长、生物质产量、总脂含量以及氮磷的去除情况的影响。结果表明:生活废水非常适合于产油微藻的培养,利用生活废水进行微藻培养中,仅需补充添加无机氮、无机磷、柠檬酸铁铵以及微量元素。但这些营养组分的加入量对藻细胞的生长、生物量和油脂积累有重要影响。在优化的废水培养基中微藻细胞浓度可达8.0 g/L左右,远高于标准BG11培养基5.0 g/L的水平。微藻细胞对于无机氮与磷有着高的吸收能力,在废水中加入185.25 mg/L以下无机氮,16.1 mg/L以下无机磷的条件下培养3~4 d后,培养液水体中未检测到有氮磷残留。由此表明利用城市生活废水培养含油微藻可以在获得微藻油脂产品的同时实现水体的无害化处理。  相似文献   

10.
The objective of this study was to investigate nutrient limitation of algal abundance in Anderson-Cue Lake, a softwater clear oligotrophic lake in north-central Florida. Nutrient diffusing clay pots and cylindrical enclosures were used in the field to test effects of different combinations of nitrogen, phosphorus, silica, and carbon on algal standing crop and composition of periphytic and planktonic algae, respectively. Effects of nutrient enrichment on periphytic algae were examined in two studies conducted 31 May – 8 July and 10 June – 15 July 1991. Nutrient effects on planktonic algae were examined in one study from 13 June – 1 July 1991. Planktonic and periphytic algal biovolume was significantly higher (p<0.05) when nitrogen and carbon were added in combination than with treatments without nitrogen, carbon, or nitrogen and carbon. Treatments with nitrogen and carbon combined resulted in lower algal diversity and dominance by coccoid green algae andScenedesmus. Results indicate that carbon and nitrogen can be limiting factors to algal growth in Anderson-Cue Lake and possibly other lakes of similar water quality.  相似文献   

11.
An alternative to land spreading of manure is to grow crops of algae on the N and P present in the manure and convert manure N and P into algal biomass. The objective of this study was to evaluate the fertilizer value of dried algal biomass that had been grown using anaerobically digested dairy manure. Results from a flask study using two soils amended with algal biomass showed that 3% of total algal nitrogen (N) was present as plant available N at day 0. Approximately 33% of algal N was converted to plant available N within 21 days at 25 degrees C in both soils. Levels of Mehlich-3 extractable phosphorus (P) in the two soils rose with increasing levels of algal amendment but were also influenced by existing soil P levels. Results from plant growth experiments showed that 20-day old cucumber and corn seedlings grown in algae-amended potting mix contained 15-20% of applied N, 46-60% of available N, and 38-60% of the applied P. Seedlings grown in algae-amended potting mixes were equivalent to those grown with comparable levels of fertilizer amended potting mixes with respect to seedling dry weight and nutrient content. These results suggest that dried algal biomass produced from treatment of anaerobically digested dairy manure can substitute for commercial fertilizers used for potting systems.  相似文献   

12.
Using algae to simultaneously treat wastewater and produce energy products has potential environmental and economic benefits. This study evaluates the life cycle energy, greenhouse gas (GHG) emissions, eutrophication potential, and cost impacts of incorporating an algal turf scrubber (ATS) into a treatment process for dairy wastewater. A life cycle inventory and cost model was developed to simulate an ATS treatment system where harvested algae would be used to generate biogas for process heat and electricity generation. Modeling results show that using an ATS significantly reduces eutrophication impacts by reducing chemical oxygen demand, nitrogen, and phosphorus in the wastewater. With low water recirculation rates through the ATS and high algae productivity, inclusion of the ATS results in net energy displacement and a reduction of GHG emissions compared to a system with no ATS. However, if high water recirculation rates are used or if algae biosolids from the digester are dried, the system results in a net increase in energy consumption and GHG emissions. The life cycle treatment cost was estimated to be $1.42 USD per cubic meter of treated wastewater. At this cost, using an ATS would only be cost effective for dairies if they received monetary credits for improved water quality on the order of $3.83 per kilogram of nitrogen and $9.57 per kilogram of phosphorus through, for example, nutrient trading programs.  相似文献   

13.
Two Algal Turf Scrubber (ATS) units were deployed on the Great Wicomico River (GWR) for 22 months to examine the role of substrate in increasing algal productivity and nutrient removal. The yearly mean productivity of flat ATS screens was 15.4 g · m?2 · d?1. This was elevated to 39.6 g · m?2 · d?1 with a three‐dimensional (3‐D) screen, and to 47.7 g · m?2 · d?1 by avoiding high summer harvest temperatures. These methods enhanced nutrient removal (N, P) in algal biomass by 3.5 times. Eighty‐six algal taxa (Ochrophyta [diatoms], Chlorophyta [green algae], and Cyan‐obacteria [blue–green algae]) self‐seeded from the GWR and demonstrated yearly cycling. Silica (SiO2) content of the algal biomass ranged from 30% to 50% of total biomass; phosphorus, nitrogen, and carbon content of the total algal biomass ranged from 0.15% to 0.21%, 2.13% to 2.89%, and 20.0% to 25.7%, respectively. Carbohydrate content (at 10%–25% of AFDM) was dominated by glucose. Lipids (fatty acid methyl ester; FAMEs) ranged widely from 0.5% to 9% AFDM, with Omega‐3 fatty acids a consistent component. Mathematical modeling of algal produ‐ctivity as a function of temperature, light, and substrate showed a proportionality of 4:3:3, resp‐ectively. Under landscape ATS operation, substrate manipulation provides a considerable opportunity to increase ATS productivity, water quality amelioration, and biomass coproduction for fertilizers, fermentation energy, and omega‐3 products. Based on the 3‐D prod‐uctivity and algal chemical composition demonstrated, ATS systems used for nonpoint source water treat‐ment can produce ethanol (butanol) at 5.8× per unit area of corn, and biodiesel at 12.0× per unit area of soy beans (agricultural production US).  相似文献   

14.
Liu H  Zhou Y  Xiao W  Ji L  Cao X  Song C 《Microbiological research》2012,167(5):292-298
The impacts of different nutrient additions (N + P, N + P + C, 4N + P, 4N + P + C, N + 2P) on the growth of algae and bacteria were studied in a microcosm experiment. Since alkaline phosphatase activity (APA) provides an indication of phosphorus deficiency, the higher value for algal APA in the treatments with excess nitrogen and for bacterial APA in the treatments with excess carbon suggested that, algal and bacterial phosphorus-limited status were induced by abundant nitrogen and carbon input, respectively. Bacterial phosphorus-limited status was weakened due to higher bacterial competition for phosphorus, compared to algae. In comparison with the bacterial and specific bacterial APA, higher values of algal and specific algal APA were found, which showed a gradual increase that coincided with the increase of chlorophyll a concentration. This fact indicated not only a stronger phosphorus demand by algae than by bacteria, but also a complementary relationship for phosphorus demand between algae and bacteria. However, this commensalism could be interfered by glucose input resulting in the decline of chlorophyll a concentration. Furthermore, the correlation between bacterial numbers and chlorophyll a concentration was positive in treatments without carbon and blurry in treatments with carbon. These observations validate a hypothesis that carbon addition can stimulate bacterial growth justifying bacterial nutrient demand, which decreases the availability of nutrients to algae and affects nutrient relationship between algae and bacteria. However, this interference would terminate after algal and bacterial adaption to carbon input.  相似文献   

15.
Chitin, which is a biopolymer of the amino sugar glucosamine (GlcN), is highly abundant in aquatic ecosystems, and its degradation is assigned a key role in the recycling of carbon and nitrogen. In order to study the significance of chitin decomposition in two temperate freshwater lakes with contrasting trophic and redox conditions, we measured the turnover rate of the chitin analog methylumbelliferyl-N,N'-diacetylchitobioside (MUF-DC) and the presence of chitinase (chiA) genes in zooplankton, water, and sediment samples. In contrast to the eutrophic and partially anoxic lake, chiA gene fragments were detectable throughout the oligotrophic water column and chiA copy numbers per ml of water were up to 15 times higher than in the eutrophic waters. For both lakes, the highest chiA abundance was found in the euphotic zone--the main habitat of zooplankton, but also the site of production of easily degradable algal chitin. The bulk of chitinase activity was measured in zooplankton samples and the sediments, where recalcitrant chitin is deposited. Both, chiA abundance and chitinase activity correlated well with organic carbon, nitrogen, and concentrations of particulate GlcN. Our findings show that chitin, although its overall contribution to the total organic carbon is small (~0.01 to 0.1%), constitutes an important microbial growth substrate in these temperate freshwater lakes, particularly where other easily degradable carbon sources are scarce.  相似文献   

16.
Harnessing solar energy to grow algal biomass on wastewater nutrients could provide a holistic solution to nutrient management problems on dairy farms. The production of algae from a portion of manure nutrients to replace high-protein feed supplements which are often imported (along with considerable nutrients) onto the farm could potentially link consumption and supply of on-farm nutrients. The objective of this research was to assess the ability of benthic freshwater algae to recover nutrients from dairy manure and to evaluate nutrient uptake rates and dry matter/crude protein yields in comparison to a conventional cropping system. Benthic algae growth chambers were operated in semi-batch mode by continuously recycling wastewater and adding manure inputs daily. Using total nitrogen (TN) loading rates of 0.64-1.03 g m(-2) d(-1), the dried algal yields were 5.3-5.5 g m(-2) d(-1). The dried algae contained 1.5-2.1% P and 4.9-7.1% N. At a TN loading rate of 1.03 g m(-2) d(-1), algal biomass contained 7.1% N compared to only 4.9% N at a TN loading rate of 0.64 g m(-2) d(-1). In the best case, algal biomass had a crude protein content of 44%, compared to a typical corn silage protein content of 7%. At a dry matter yield of 5.5 g m(-2) d(-1), this is equivalent to an annual N uptake rate of 1,430 kg ha(-1) yr(-1). Compared to a conventional corn/rye rotation, such benthic algae production rates would require 26% of the land area requirements for equivalent N uptake rates and 23% of the land area requirements on a P uptake basis. Combining conventional cropping systems with an algal treatment system could facilitate more efficient crop production and farm nutrient management, allowing dairy operations to be environmentally sustainable on fewer acres.  相似文献   

17.
In this study, the ability of algae to treat a wood-based pulp and paper industry wastewater was investigated. Tests were performed in batch reactors seeded with a mixed culture of algae. Under different lighting and initial wastewater strength conditions, changes in COD, AOX and color contents of reactors were followed with time. Algae were found to remove up to 58% of COD, 84% of color and 80% of AOX from pulp and paper industry wastewaters. No remarkable differences were observed in COD and color when light intensity and wastewater strength were changed, while AOX removals were strongly affected. Algal species identification studies revealed that some green algae (Chlorella) and diatom species were dominant in the treatment. The study also showed that algae grew mixotrophically, while the main mechanism of color and organics removal from pulping effluents was partly metabolism and partly metabolic conversion of colored and chlorinated molecules to non-colored and non-chlorinated molecules. Adsorption onto algal biomass was not so effective.  相似文献   

18.
Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater.  相似文献   

19.
为研究生活污水处理后其受纳水体中浮游植物增长的氮磷限制,选取某生活污水处理系统的受纳水体为研究对象,依据我国《城镇污水处理厂污染物排放标准》(GB189182002)一级A标准(氨氮5 mg/L和磷0.5 mg/L)进行氮磷营养盐最高浓度和浓度梯度添加微宇宙实验模拟实验。最高浓度添加实验结果显示N、P双添加的实验组中3d后叶绿素a的浓度显著(P0.05)高于单独添加氮和单独添加磷实验组。因此,氮和磷是被研究水体浮游植物生长的共同限制因子。同时结果还暗示受纳水体接纳处理后的生活污水仍可能会造成浮游植物在短期内剧烈增长。浓度梯度添加实验结果显示,将磷控制在0.27 mg/L或者将氮控制在1.0 mg/L以下,可以有效降低被研究水体浮游植物的增长。据此可以进一步严格生活污水处理后的排放标准以降低受纳水体水华的风险。  相似文献   

20.
人工湿地植物对观赏水中氮磷去除的贡献   总被引:113,自引:3,他引:110  
蒋跃平  葛滢  岳春雷  常杰 《生态学报》2004,24(8):1718-1723
研究了处理观赏用轻度富营养化水的人工湿地中植物的生长特性和氮磷去除作用。研究发现 ,所选用的 2 1种植物中 ,有17种植物在人工湿地中生长良好 ,稳定生长 10 5 d以后 ,其平均总生物量在 15 5~ 1317g/ m2之间 ,除了鸭跖草的地上地下生物量比 (A/ U)为 2 0 .5外 ,其余都在 1.18~ 4 .2 9之间。植株地上部 N和 P的浓度分别在 10 .99~ 34.74 mg/ g和 0 .5 9~ 3.81mg/ g之间 ;地下部 N和 P浓度分别在 6 .2 0~ 2 9.5 0 mg/ g及 0 .72~ 3.83mg/ g之间。大部分植物地上部 N和 P的浓度大于地下部 (p<0 .0 5 )。植物的 N、P积累量分别在 2 .10~ 2 4 .4 8g/ m2 和 0 .2 3~ 1.95 g/ m2 之间。在处理轻度富营养化水的人工湿地中 ,植物吸收对氮磷的去除起着主要作用——贡献率分别为 4 6 .8%和 5 1.0 %。植物的氮磷积累量与浓度及生物量之间均存在显著相关 ,所以可以直接以生物量为指标选择人工湿地植物。同时考虑净化和景观效果 ,可为处理城镇轻度富营养化水的人工湿地的植物选择提供参考  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号