首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Introduction

The differences in fecal metabolome between ankylosing spondylitis (AS)/rheumatoid arthritis (RA) patients and healthy individuals could be the reason for an autoimmune disorder.

Objectives

The study explored the fecal metabolome difference between AS/RA patients and healthy controls to clarify human immune disturbance.

Methods

Fecal samples from 109 individuals (healthy controls 34, AS 40, and RA 35) were analyzed by 1H NMR spectroscopy. Data were analyzed with principal component analysis (PCA) and orthogonal projection to latent structure discriminant (OPLS-DA) analysis.

Results

Significant differences in the fecal metabolic profiles could distinguish AS/RA patients from healthy controls but could not distinguish between AS and RA patients. The significantly decreased metabolites in AS/RA patients were butyrate, propionate, methionine, and hypoxanthine. Significantly increased metabolites in AS/RA patients were taurine, methanol, fumarate, and tryptophan.

Conclusion

The metabolome variations in feces indicated AS and RA were two homologous diseases that could not be distinguished by 1H NMR metabolomics.
  相似文献   

2.
3.

Purpose

To comply with the effluent regulation of boron, replacement of boric acid with citric acid in a nickel electroplating bath is proposed. Although the bath avoids the discharge of boron, it increases the discharge of nickel owing to the chelating effect of citric acid, which disturbs the wastewater treatment. To balance this trade-off, the environmental impacts of a traditional nickel plating process (the Watts bath) and the citrate bath must be compared by life cycle assessment.

Methods

The life cycle impact assessment method was LIME2. To estimate the trade-off between boron and nickel discharge into wastewater, the characterization and damage factors on human toxicity and ecotoxicity were calculated. The processes were then compared using data from actual processes. The functional unit was “plating per 1-kg part.” However, the plating efficiency depends on the type, shape, and surface area of the part. The data of the citrate bath were modeled. In the modeling, the amounts of nickel chloride and nickel sulfate in the citrate bath were based on the Watts bath.

Results and discussion

In comparison with other chemicals, the calculated characterization and damage factors of boron and nickel were found to be reasonable. The integration results revealed that the citrate bath exerted greater environmental impact than the Watts bath. Although the Watts bath involved more environmentally damaging processes than the citrate bath, the sum of these impacts was much smaller than the impact of effluent from the citrate bath. Moreover, the environmental impact of effluent can be significantly reduced by flocculants, with almost no additional environmental impact incurred by the increased sludge.

Conclusions

The newly developed citrate plating bath exerts higher environmental impact than the traditional Watts bath because the environmental impacts of the release of nickel chelated with citric acid exceed the reduced boron emissions. Therefore, there is a trade-off between the two methods. When installing the citrate bath, the wastewater treatment must be altered to reduce the nickel emissions.
  相似文献   

4.

Purpose

Cheese is one of the world’s most widely consumed dairy products and its popularity is ever growing. However, as concerns for the environmental impact of industries increase, products like cheese, which have a significant environmental impact, may lose their popularity. A commonly used technique to assess the environmental impact of a product is life cycle assessment (LCA). In this paper, a state-of-the-art review of LCA studies on the environmental impact of cheese production is presented.

Methods

Sixteen LCA studies, which explored the impact from the production of a variety of cheese types (fresh, mature and semi-hard) were examined and discussed. The four stages of the LCA were examined and the range of results of selected environmental impact categories (global warming potential, acidification potential and eutrophication potential) were detailed and discussed.

Results and discussion

For each of these environmental impact categories, raw milk production was consistently found to be the most significant contributor to the total impact, which was followed by processing. It was found that allocation between cheese and its by-products was crucial in determining the impact of cheese production and standardisation or guidelines may be needed. Very little information relating to wastewater treatment system and processes were reported and this leads to inaccurate environmental impact modelling relating to these aspects of the manufacture of cheese. Very few studies included the design of packaging in terms of reducing food waste, which may significantly contribute to the overall environmental impact.

Conclusions

As raw milk production was found to have the greatest contribution to environmental impact, mitigation strategies at farm-level, particularly in relation to enteric fermentation and manure management, need to be implemented. Additionally, based on the literature, there is a suggestion that fresh cheese has less of an environmental impact than semi-hard cheeses, particularly when examining direct energy consumption. However, there needs to be more case studies investigated to justify this statement.
  相似文献   

5.

Objectives

To compare the degradation performance and biodiversity of a polyvinyl alcohol-degrading microbial community under aerobic and anaerobic conditions.

Results

An anaerobic–aerobic bioreactor was operated to degrade polyvinyl alcohol (PVA) in simulated wastewater. The degradation performance of the bioreactor during sludge cultivation and the microbial communities in each reactor were compared. Both anaerobic and aerobic bioreactors demonstrated high chemical oxygen demand removal efficiencies of 87.5 and 83.6 %, respectively. Results of 16S rDNA sequencing indicated that Proteobacteria dominated in both reactors and that the microbial community structures varied significantly under different operating conditions. Both reactors obviously differed in bacterial diversity from the phyla Planctomycetes, Chlamydiae, Bacteroidetes, and Chloroflexi. Betaproteobacteria and Alphaproteobacteria dominated, respectively, in the anaerobic and aerobic reactors.

Conclusions

The anaerobic–aerobic system is suitable for PVA wastewater treatment, and the microbial genetic analysis may serve as a reference for PVA biodegradation.
  相似文献   

6.
7.

Objective

To develop a method to treat saline phenolic wastewater in a biological contact oxidation reactor (BCOR) with immobilized cells of a marine microorganism, Oceanimonas sp., isolated from seawater.

Results

Cells were immobilized on fibre carriers in the BCOR. Saline wastewater with phenol at 1.5 g/l and NaCl at 6 % (w/v) was treated. In continuous assays, 99 % removal of phenol was achieved and a kinetic model for the phenol degradation is presented based on Monod’s equation.

Conclusion

The BOCR system using immobilized cells of Oceanimonas efficiently treats saline phenolic wastewaters without having decrease the salinity of the wastewater.
  相似文献   

8.

Objectives

To improve its phosphate accumulating abilities for phosphate recycling from wastewater, a magnetotactic bacterium, Magnetospirillum gryphiswaldense, was genetically modified to over-express polyphosphate kinase.

Results

Polyphosphate kinase was over-expressed in the bacterium. The recombinant strain accumulated ninefold more polyphosphate from synthetic wastewater compared to original wild type. The magnetic property of the recombinant M. gryphiswaldense strain was retained.

Conclusions

The recombinant M. gryphiswaldense can be used for phosphate removal and recovery in bioremediation.
  相似文献   

9.

Purpose

China is the world’s largest producer and consumer of refined and reclaimed copper because of the rapid economic and industrial development of this country. However, only a few studies have analyzed the environmental impact of China’s copper industry. The current study analyzes the life cycle environmental impact of copper production in China.

Methods

A life cycle impact assessment using the ReCiPe method was conducted to estimate the environmental impact of refined and reclaimed copper production in China. Uncertainty analysis was also performed based on the Monte-Carlo simulation.

Results and discussion

The environmental impact of refined copper was higher than that of reclaimed copper in almost all categories except for human toxicity because of the direct atmospheric arsenic emission during the copper recycling stage. The overall environmental impact for the refined copper production was mainly attributed to metal depletion, freshwater ecotoxicity, marine ecotoxicity, and water depletion potential impact. By contrast, that for the reclaimed copper production was mainly caused by human toxicity impact.

Conclusions

Results show that the reclaimed copper scenario had approximately 59 to 99% more environmental benefits than those of the refined copper scenario in most key categories except for human toxicity, in which a similar environmental burden was observed between both scenarios. The key factors that reduce the overall environmental impact for China’s copper industry include decreasing direct heavy metal emissions in air and water, increasing the national recycling rate of copper, improving electricity consumption efficiency, replacing coal with clean energy sources for electricity production, and optimizing the efficiency of copper ore mining and consumption.
  相似文献   

10.

Introduction

Ceramides play a key role in skin barrier function in homeostatic and pathological conditions and can be sampled non-invasively through stratum corneum collection.

Objectives

To develop a novel UHPLC/Scheduled MRM method for the identification and relative distribution of eleven classes of ceramides, which are separated by UHPLC and determined by their specific retention times. The precise composition of the fatty acid and sphingoid base parts of each individual ceramide is determined via mass fragmentation.

Methods

More than 1000 human and pig ceramides were identified. Three human and minipig ceramide classes, CER[AS], CER[NS] and CER[EOS] have been investigated in depth.

Results

Sphingoid bases were characterized by a prevalence of chain lengths with sizes from C16 to C22, whereas fatty acids were mainly observed in the range of C22–C26. Overall, the ceramide profiles between human and minipig stratum corneum were similar. Differences in the CER[AS] and CER[NS] classes included a more homogeneous distribution of fatty acids (16–30 carbon atoms) in minipig, whereas in human longer fatty acid chains (>?24 carbon atoms) predominated.

Conclusion

The method will be useful for the analysis of healthy and pathological skin in various specie, and the measurement of the relative distribution of ceramides as biomarkers for pharmacodynamic studies.
  相似文献   

11.

Purpose

The built environment consists of a huge amount of infrastructure, such as roads and utilities. The objective of this paper is to assess the life cycle financial and environmental impact of road infrastructure in residential neighbourhoods and to analyse the relative contribution of road infrastructure in the total impact of neighbourhoods.

Methods

Various road sections are analysed based on an integrated life cycle approach, combining life cycle costing and life cycle assessment. To deal with complexity, a hierarchic assessment structure, using the principles of the “element method for cost control”, is implemented. Four neighbourhood models with diverse built densities are compared to gain insight in the relative impact of road infrastructure in neighbourhoods.

Results and discussion

The results reveal important financial and environmental impact differences between the road sections analysed. Main contributors to the life cycle financial and environmental impact are the surface layer and electrical and piped services. The contribution of road infrastructure to the total neighbourhood impact, ranging from 2 to 9 % of the total cost, is relatively limited, compared to buildings, but not negligible in low built density neighbourhoods.

Conclusions

Good spatial planning of the neighbourhood is recommended to reduce the amount of road infrastructure and the related financial and environmental impact. The priority should be to design denser neighbourhood layouts, before decreasing the financial and environmental impact of the road sections.
  相似文献   

12.

Objectives

To demonstrate the effectiveness of a novel two-stage system coupling hydrolytic acidification with algal microcosms for the treatment of acrylonitrile butadiene styrene (ABS) resin-manufacturing wastewater.

Results

After hydrolytic acidification, the BOD5/COD ratio increased from 0.22 to 0.56, showing improved biodegradability of the wastewater. Coupled with hydrolytic acidification, the algal microcosms showed excellent capability of in-depth removal of COD, NH3–N and phosphorus with removal rates 83, 100, and 89%, respectively, and aromatic pollutants, including benzene, were almost completely removed. The biomass concentration of Chlorella sp. increased from 5 × 106 to 2.1 × 107 cells/ml after wastewater treatment.

Conclusions

This two-stage coupling system achieved deep cleaning of the benzene-containing petrochemical wastewater while producing greater algae biomass resources at low cost.
  相似文献   

13.

Introduction

Intrahepatic cholestasis of pregnancy (ICP) is a common maternal liver disease; development can result in devastating consequences, including sudden fetal death and stillbirth. Currently, recognition of ICP only occurs following onset of clinical symptoms.

Objective

Investigate the maternal hair metabolome for predictive biomarkers of ICP.

Methods

The maternal hair metabolome (gestational age of sampling between 17 and 41 weeks) of 38 Chinese women with ICP and 46 pregnant controls was analysed using gas chromatography–mass spectrometry.

Results

Of 105 metabolites detected in hair, none were significantly associated with ICP.

Conclusion

Hair samples represent accumulative environmental exposure over time. Samples collected at the onset of ICP did not reveal any metabolic shifts, suggesting rapid development of the disease.
  相似文献   

14.

Background

Pathologic studies play an important role in evaluating patients with Alport syndrome besides genotyping. Difficulties still exist in diagnosing Alport syndrome (AS), and misdiagnosis is a not-so-rare event, even in adult patient evaluated with renal biopsy.

Methods

We used nested case–control study to investigate 52 patients previously misdiagnosed and 52 patients initially diagnosed in the China Alport Syndrome Treatments and Outcomes Registry e-system.

Results

We found mesangial proliferative glomerulonephritis (MsPGN, 26.9%) and focal and segmental glomerulosclerosis (FSGS, 19.2%) were the most common misdiagnosis. FSGS was the most frequent misdiagnosis in female X-linked AS (fXLAS) patients (34.8%), and MsPGN in male X-linked AS (mXLAS) patients (41.2%). Previous misdiagnosed mXLAS patients (13/17, 76.5%) and autosomal recessive AS (ARAS) patients (8/12, 66.7%) were corrected after a second renal biopsy. While misdiagnosed fXLAS patients (18/23, 78.3%) were corrected after a family member diagnosed (34.8%) or after rechecking electronic microscopy and/or collagen-IV alpha-chains immunofluresence study (COL-IF) (43.5%) during follow-up. With COL-IF as an additional criterion for AS diagnosis, we found that patients with less than 3 criteria reached have increased risk of misdiagnosis (3.29-fold for all misdiagnosed AS patients and 3.90-fold for fXLAS patients).

Conclusion

We emphasize timely and careful study of electronic microscopy and COL-IF in pathologic evaluation of AS patients. With renal and/or skin COL-IF as additional criterion, 3 diagnosis criteria reached are the cutoff for diagnosing AS pathologically.
  相似文献   

15.

Introduction

Data sharing is being increasingly required by journals and has been heralded as a solution to the ‘replication crisis’.

Objectives

(i) Review data sharing policies of journals publishing the most metabolomics papers associated with open data and (ii) compare these journals’ policies to those that publish the most metabolomics papers.

Methods

A PubMed search was used to identify metabolomics papers. Metabolomics data repositories were manually searched for linked publications.

Results

Journals that support data sharing are not necessarily those with the most papers associated to open metabolomics data.

Conclusion

Further efforts are required to improve data sharing in metabolomics.
  相似文献   

16.

Introduction

Collecting feces is easy. It offers direct outcome to endogenous and microbial metabolites.

Objectives

In a context of lack of consensus about fecal sample preparation, especially in animal species, we developed a robust protocol allowing untargeted LC-HRMS fingerprinting.

Methods

The conditions of extraction (quantity, preparation, solvents, dilutions) were investigated in bovine feces.

Results

A rapid and simple protocol involving feces extraction with methanol (1/3, M/V) followed by centrifugation and a step filtration (10 kDa) was developed.

Conclusion

The workflow generated repeatable and informative fingerprints for robust metabolome characterization.
  相似文献   

17.
18.

Background

Microbial communities are influenced by environmental factors including host genetics. We investigated the relationship between host bitter taste receptor genotype hTAS2R38 and oral microbiota, together with the influence of geographical location.

Methods

hTAS2R38 polymorphisms and 16S bacterial gene sequencing from oral samples were analyzed from a total of 45 healthy volunteers from different geographical locations.

Results

Genetic variation in the bitter taste receptor TAS2R38 reflected in the microbial composition of oral mucosa in Finnish and Spanish subjects. Multivariate analysis showed significant differences in the microbial composition between country and also dependent on taste genotype. Oral microbiota was shown to be more stable to the geographical location impact among AVI-homozygotes than PAV-homozygotes or heterozygotes (PAV/AVI).

Conclusion

Geographical location and genetic variation in the hTAS2R38 taste receptor impact oral mucosa microbial composition. These findings provide an advance in the knowledge regarding the interactions between taste receptor genes and oral microbiota. This study suggests the role of host-microbiota interactions on the food taste perception in food choices, nutrition, and eating behavior.
  相似文献   

19.

Purpose

We investigate how the boundary between product systems and their environment has been delineated in life cycle assessment and question the usefulness and ontological relevance of a strict division between the two.

Methods

We consider flows, activities and impacts as general terms applicable to both product systems and their environment and propose that the ontologically relevant boundary is between the flows that are modelled as inputs to other activities (economic or environmental)—and the flows that—in a specific study—are regarded as final impacts, in the sense that no further feedback into the product system is considered before these impacts are applied in decision-making. Using this conceptual model, we contrast the traditional mathematical calculation of the life cycle impacts with a new, simpler computational structure where the life cycle impacts are calculated directly as part of the Leontief inverse, treating product flows and environmental flows in parallel, without the need to consider any boundary between economic and environmental activities.

Results and discussion

Our theoretical outline and the numerical example demonstrate that the distinctions and boundaries between product systems and their environment are unnecessary and in some cases obstructive from the perspective of impact assessment, and can therefore be ignored or chosen freely to reflect meaningful distinctions of specific life cycle assessment (LCA) studies. We show that our proposed computational structure is backwards compatible with the current practice of LCA modelling, while allowing inclusion of feedback loops both from the environment to the economy and internally between different impact categories in the impact assessment.

Conclusions

Our proposed computational structure for LCA facilitates consistent, explicit and transparent modelling of the feedback loops between environment and the economy and between different environmental mechanisms. The explicit and transparent modelling, combining economic and environmental information in a common computational structure, facilitates data exchange and re-use between different academic fields.
  相似文献   

20.

Purpose

Sustainable development principles are leading earthwork companies to use all-natural materials extracted from the construction site to build the infrastructure. Natural materials with low characteristics must be improved. For dry soils, the common solution is to increase the compaction energy or add important quantities of water to reach the target dry density and bearing capacity. To reduce the environmental impact of their activities, the use of industrial organic products has been proposed. The aim of this study was to assess the potential benefits that could be expected from the use of these non-traditional treatments in earthworks with a well-recognised environmental impact assessment methodology.

Methods

Three non-traditional products were selected as follows: an acid solution (AS), an enzymatic solution (ES) and a calcium lignosulfonate (LS). For each of these categories, geotechnical properties such as compaction, bearing capacity, unconfined compressive strength and stiffness were first determined. Based on these results, the construction strategy for which non-traditional additives lead to greater improvement of soil properties was defined. The environmental balance of each option was then determined via a comparative process life cycle assessment study that considered ten impact categories.

Results and discussion

An experimental study showed the ability of enzymatic and lignosulfonate additives to improve soil characteristics with significant savings of water at the construction stage. The purpose of the study was also to compare the global environmental impact of each treatment strategy defined from laboratory investigations. The life cycle assessment results showed that some construction strategies lead to a significant reduction in the environmental impact compared with the reference strategy. However, these environmental improvements are strongly linked to the choice of the construction strategy and site conditions as discussed in the sensitivity analysis.

Conclusions

Within the three tested non-traditional additives, enzymatic and lignosulfonate treatments showed an association of technical and environmental interest for the compaction of dry soils. As demonstrated in the sensitivity analysis, these benefits are achieved when the production and transport steps have limited environmental impact. Thus, despite an important transportation distance for enzymatic additive, the small quantities that must be used (0.002 % by dry weight) have a limited contribution on the global environmental impact. In contrast, the production step strongly impacts the treatment with lignosulfonates. Moreover, environmental interest remains strongly dependent on the site conditions and construction strategy, which is why the adopted methodology can accurately perform an initial evaluation before implementing a soil treatment with a non-traditional product.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号