首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
丝裂原活化蛋白激酶(Mitogen-activated protein kinases,MAPKs)是广泛表达的丝氨酸/酪氨酸激酶,在哺乳动物细胞多种信号转导通路中起重要作用,MAPKs有3个主要家族:ERKs,JNKs和p38MAPKs.p38信号通路是MAPK通路的一重要分支,在心肌缺血再灌注的损伤中起很重要的作用,p38MAPK信号通路与心肌缺血再灌注机制都有或多或少的联系,本文就以p38MAPK在这一病理过程的研究进展做一综述.  相似文献   

2.
目的:丝裂原活化蛋白激酶(Mitogen-activated Protein Kinases, MAPKs)是细胞内重要的信号传导通路,双位点特异性磷酸酶(Mitogen-activated Protein Kinase Phosphatases, MKPs)去磷酸化MAPKs,负调控MAPKs的信号传递。在MKPs去磷酸化MAPKs的过程中,MAPKs同时会激活部分MKPs的催化能力,MKP1便是其中之一。本文旨在比较三种经典MAPKs底物,ERK2、JNK1和p38α对MKP1磷酸酶催化能力的激活效果,进一步理解MAPKs与MKP1的底物特异性机制。方法:以p NPP为底物,检测在不同浓度的非磷酸化ERK2、JNK1和p38α存在下,MKP1-CD催化结构域片段蛋白质去磷反应速度的变化,对比所得的动力学参数以确定MAPKs对MKP1激活程度的差异。结果:ERK2和JNK1能够激活MKP1的催化活力,将催化速率提升1.5~2倍,而ERK2与MKP1的结合力比JNK1弱约6倍;p38α则没有观察到对MKP1去磷酸化能力的激活效果。结论:三种经典MAPKs中,ERK2和JNK1能够激活MKP1催化活力,而p38α则无法激活MKP1,进一步揭示了MAPKs和MKPs间的特异性相互作用,以及底物对MKPs活力的影响。  相似文献   

3.
综述了MAPKs参与植物细胞周期调控的最新进展 ,植物激素与MAPK ,MAPK与植物细胞有丝分裂 ,以及MAPK与植物细胞分裂和生长的调控等三方面 ,阐述MAPK参与调控高等植物细胞分化和有丝分裂的机制。  相似文献   

4.
MAPK信号通路与脂肪细胞分化   总被引:1,自引:0,他引:1  
周华  蔡国平 《生命的化学》2006,26(6):505-507
促分裂原活化的蛋白激酶(MAPK)通路是真核细胞重要的信号转导通路,主要有ERK、p38和JNK三条途径,参与调控多种细胞应答和生理病理过程。该文重点讨论了MAPK对脂肪细胞分化的调控。其中ERK对脂肪细胞分化的调节具有多样性,随分化进程不同表现为不同的调控功能,p38和JNK也通过不同的机制对脂肪细胞分化发挥相异的调节作用。MAPK信号转导与脂肪分化的紧密联系,使其可能成为调控与脂分化密切相关的代谢疾病如肥胖、糖尿病等的一条关键通路。  相似文献   

5.
丝裂原活化蛋白激酶(mitogen-activated proteinkinases,MAPKs)级联反应是细胞内重要的信号传导系统之一,参与细胞生长、发育、分化和凋亡等一系列生理、病理过程.P38 MAPK信号传导通路是MAPK通路的分支之一,介导了应激、炎性细胞因子、细菌产物等多种刺激引起的细胞反应,对细胞周期调控具有重要作用.但对不同的卵巢癌细胞系,或者不同的刺激,P38通路的作用不完全相同,甚至可能相反,提示对P38通路的功能仍需进一步的研究,他可能是肿瘤治疗的新靶点.本文就P38 MAPK信号传导通路与卵巢癌关系作一综述。  相似文献   

6.
丝裂原活化蛋白激酶(mitogen-activatedproteinkinases,MAPKs)级联反应是细胞内重要的信号传导系统之一,参与细胞生长、发育、分化和凋亡等一系列生理、病理过程.P38MAPK信号传导通路是MAPK通路的分支之一,介导了应激、炎性细胞因子、细菌产物等多种刺激引起的细胞反应,对细胞周期调控具有重要作用.但对不同的卵巢癌细胞系,或者不同的刺激,P38通路的作用不完全相同,甚至可能相反,提示对P38通路的功能仍需进一步的研究,他可能是肿瘤治疗的新靶点.本文就P38MAPK信号传导通路与卵巢癌关系作一综述。  相似文献   

7.
[目的]观察生理状态下人骨肉瘤细胞中p38丝裂原活化蛋白激酶(p38 mitogen-activated protein kinases,p38MAPKs)被磷酸化的过程。[方法]先进行ECFP-p38MAPK-Citrine(p38MAPK biosensor)融合蛋白表达载体的构建及鉴定,然后转染MG-63细胞24h后观察转染效率和融合蛋白表达情况。在荧光显微镜下,应用Meta Flour FRET 4.6软件测量转化生长因子-β1刺激MG-63细胞前后p38MAPK biosensor的荧光能量共振转移的变化情况。[结果]p38MAPK biosensor转染效率达30%~40%,均匀分布在胞质和胞核中。转化生长因子-β1刺激MG-63细胞后,胞质和胞核内荧光能量共振转移比值(Citrine/CFP)迅速增高,历时约30min达到最大值。特异性p38MAPK抑制剂SB-203580与细胞共孵育后,FRET比值逐渐减小。[结论]应用荧光能量共振转移技术使我们在活细胞生理状态下,实时动态监测p38MAPK被磷酸化的时空信息。  相似文献   

8.
采用绿脓杆菌培养上清及绿脓菌素刺激人呼吸道上皮细胞株A5 4 9和SPC A 1,用ELISA方法检测细胞IL 8分泌水平 ,并使用免疫印迹 (Westernblot)方法观察绿脓菌素对细胞内重要的炎症信号传导途径NF κB及丝裂原激活蛋白激酶 (MAPKs)的激活作用。实验发现 ,绿脓杆菌培养上清及绿脓菌素可诱导呼吸道上皮细胞株IL 8分泌增加 ,且具有剂量依赖效应。绿脓菌素刺激细胞可使细胞内IκB α发生降解 ,同时使MAPK家族蛋白分子 (ERK1 2、p38、JNK)发生磷酸化。MEK1 2 (ERK1 2激酶 )抑制剂U0 12 6 (10 μmol L)和p38MAPK抑制剂SB2 0 35 80 (10 μmol L)可降低绿脓菌素诱导A5 4 9细胞IL 8的合成。以上结果显示绿脓菌素通过MAPK信号传导通路增强呼吸道上皮细胞IL 8的表达 ;NF κB通路也参与了绿脓菌素调控细胞IL 8表达的过程  相似文献   

9.
植物中的MAPK及其在信号传导中的作用   总被引:7,自引:0,他引:7  
促分裂原活化蛋白激酶(MAPKs)是一类存在于真核生物中的丝氨酸/苏氨酸蛋白激酶。同动物和酵母中MAPKs类似,植物中的MAPK级联途径也是由MAPKs、MAPKKs、MAPKKKs三种类型的激酶组成。植物细胞内受体接受外界刺激信号,然后依次磷酸化激活MAPKKKs、MAPKKs和MAPKs,并影响相关基因表达。目前已经从植物中分离到一些MAPKs、MAPKKs和MAPKKKs,它们参与了植物激素、生物胁迫及非生物胁迫等过程的信号传导。介绍了植物响应外界环境胁迫过程中,不同机制和因子对MAPKs级联途径的调控。  相似文献   

10.
丝裂原激活蛋白激酶(mitogen-activated protein kinases,MAPKs)信号通路是生物体内重要的信号传导通路,其主要参与调控细胞的增殖、生长、分化、凋亡和炎症反应等多种生理病理过程。MAPKs信号通路在多种心血管疾病的病理过程中起着重要调控作用。动脉粥样硬化(athrosclerosis,AS)所致的各种急重症严重危害人类的健康,发病率呈逐年上升的趋势,但是动脉粥样硬化发生发展的分子机制尚不完全清楚。近年来,MAPKs信号通路在动脉粥样硬化(athrosclerosis,AS)的发生发展中的作用已成为是研究的热点。  相似文献   

11.
Apoptosis is a highly coordinated or programmed cell suicide mechanism in eukaryotes. Histone modification is associated with nuclear events in apoptotic cells. Specifically H2B phosphorylation at serine 14 (Ser14) catalyzed by Mst1 kinase has been linked to chromatin condensation during apoptosis. We report that activation of MAPKs (ERK1/2, JNK1/2 and p38) together with Mst1 and caspase-3 is required for phosphorylation of H2B (Ser14) during ultraviolet B light (UVB)-induced apoptosis. UVB can trigger activation of MAPKs and induce H2B phosphorylation at Ser14 but not acetylation in a time-dependent manner. Inhibition of ERK1/2, JNK1/2 or p38 activity blocked H2B phosphorylation (Ser14). Furthermore, caspase-3 was activated by UVB to regulate Mst1 activity, which phosphorylates H2B at Ser14, leading to chromatin condensation. Full inhibition of caspase-3 activity reduced Mst1 activation and partially inhibited H2B phosphorylation (Ser14), but ERK1/2, JNK1/2 and p38 activities were not affected. Taken together, these data revealed that H2B phosphorylation is regulated by both MAPKs and caspase-3/Mst1 pathways during UVB-induced apoptosis.  相似文献   

12.
13.
Summary: The mitogen-activated protein kinases (MAPKs) regulate diverse cellular programs by relaying extracellular signals to intracellular responses. In mammals, there are more than a dozen MAPK enzymes that coordinately regulate cell proliferation, differentiation, motility, and survival. The best known are the conventional MAPKs, which include the extracellular signal-regulated kinases 1 and 2 (ERK1/2), c-Jun amino-terminal kinases 1 to 3 (JNK1 to -3), p38 (α, β, γ, and δ), and ERK5 families. There are additional, atypical MAPK enzymes, including ERK3/4, ERK7/8, and Nemo-like kinase (NLK), which have distinct regulation and functions. Together, the MAPKs regulate a large number of substrates, including members of a family of protein Ser/Thr kinases termed MAPK-activated protein kinases (MAPKAPKs). The MAPKAPKs are related enzymes that respond to extracellular stimulation through direct MAPK-dependent activation loop phosphorylation and kinase activation. There are five MAPKAPK subfamilies: the p90 ribosomal S6 kinase (RSK), the mitogen- and stress-activated kinase (MSK), the MAPK-interacting kinase (MNK), the MAPK-activated protein kinase 2/3 (MK2/3), and MK5 (also known as p38-regulated/activated protein kinase [PRAK]). These enzymes have diverse biological functions, including regulation of nucleosome and gene expression, mRNA stability and translation, and cell proliferation and survival. Here we review the mechanisms of MAPKAPK activation by the different MAPKs and discuss their physiological roles based on established substrates and recent discoveries.  相似文献   

14.
15.
Mitogen-activated protein kinases (MAPKs) participate in signaling initiated by a wide variety of extracellular stimuli. MAPKs are most commonly activated by a series of phosphorylation events in which one kinase phosphorylates another, the “MAPK cascade”. The cascade concludes with the dual phosphorylation of MAPKs on a conserved Thr-X-Tyr motif. In the case of the p38 MAPK, an exception to this paradigm has been found when signaling via the T cell antigen receptor (TCR). Rather than trigger the MAPK cascade, TCR-mediated stimulation activates proximal tyrosine kinases, which results in the phosphorylation of p38 on a noncanonical activating residue, Tyr-323. This phosphorylation activates p38 to phosphorylate third party substrates as well as its own Thr-X-Tyr motif. Here we discuss the structural and functional implications of this alternative p38 activation pathway, which may provide a new target for tissue-specific pharmacologic inhibition.  相似文献   

16.
17.
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown to induce apoptosis through caspase activation in a number of cancer cell lines while displaying minimal or no toxicity on normal cells, suggesting that this protein may hold potential for development as a new cancer therapeutic agent. Moreover, TRAIL can activate mitogen-activated protein kinases (MAPKs) in addition to caspases. However, it has not been clearly understood how MAPKs are activated by TRAIL and the biological significance of their activation. Here we show that TRAIL-induced MAPKs activation is dependent on caspase activation and that mammalian sterile 20-like kinase 1 (Mst1) functions as a mediator between caspase activation and MAPKs activation. Activation of MAPKs (JNK, p38, ERK) is differentially regulated by cleavage size (40 kDa and 36 kDa) of Mst1, which is controlled by caspase-7 and -3.  相似文献   

18.
It has been widely accepted that astrocytes, play a role in regulating almost every physiological system. In the present study, we investigated the role of particulate matter (PM) in regulating activation of astrocytes. The glial cell strain C6 was cloned from a rat glioma which was induced by N-nitrosomethylurea. The C6 cells were plated at a density of 5 × 106 cells/10 cm diameter dish and incubated with different concentrations (0, 12, 25, 50, 100, 200, and 400 μg/mL) of PM for 24 h and different time (0, 1, 3, 6, 8,12, and 24 h) with 100 μg/mL at 37 °C. The study revealed that PM stimulated the expression of inducible nitric oxide synthase (iNOS) as well as the production of IL-1β in a dose- and time-dependent manner. Furthermore, activation of JAK2/STAT3 and p38/JNK/ERK MAPKs was found in astrocytes following PM treatment. Blockage of JAK and p38/JNK/ERK MAPKs with their specific inhibitors, AG490, SB202190, SP600125 and U0126 significantly reduced PM-induced iNOS expression and IL-1β production. In addition, it was demonstrated that inhibition of p38, JNK and JAK prevented STAT3 tyrosine phosphorylation induced by PM, while blocking ERK did not. MAPKs (p38 and JNK) could regulate tyrosine STAT3 phosphorylation, which suggested that the JAK2/STAT3 pathway might be the downstream of p38/JNK MAPK pathways.  相似文献   

19.
TNF-alpha or IL-10 has been implicated to reversibly regulate physiological states of dendritic cells (DCs). However, little is known about dual stimulations of these cytokines on DC properties and the intracellular signaling events that are responsible for the regulation of these states. Here, we show that a family of mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase 2 (ERK2), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38mapk, are potentially involved in IL-10-mediated selective suppression of TNF-alpha-induced changes of the monocyte-derived DC properties. TNF-alpha induced the cluster formation of the cells and the enhancement of cell surface expression levels of CD83, CD86, and HLA-DR, and T cell stimulatory capacity, whereas the capacities for the endocytosis and the chemotactic migration were suppressed in these cells. Treatment of monocyte-derived DCs with IL-10 resulted in the reduction of the cell surface expression levels of CD86, HLA-DR, and T cell stimulatory capacity, whereas both endocytic and chemotactic migratory capacities were increased by IL-10. Dual stimulations of monocyte-derived DCs with TNF-alpha and IL-10 selectively antagonized their respective effects on these DC properties. TNF-alpha induced tyrosine phosphorylation and enzymatic activation of ERK2, SAPK/JNK, and p38mapk, whereas IL-10 did not induce these events. Dual stimulations of TNF-alpha plus IL-10 abolished TNF-alpha-induced changes of these MAPKs in DCs. These results suggest that the blockage in the MAPKs cascades contributes to IL-10-mediated repression of TNF-alpha-induced changes of DC properties.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号