首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
为探索纤毛虫在营养及休眠条件下两套遗传系统的作用关系,对膜状急纤虫(Tachysomapellionella)营养细胞和休眠包囊大核DNA、线粒体DNA进行了RAPD比较。结果显示,在所选用的34条随机引物中,大核DNA共扩增出203条片段,其中以休眠包囊大核DNA为模板扩增出45条特有片段,以营养细胞大核DNA为模板扩增出36条特有片段,两者存在40%的差异。在所选用的32条随机引物中,线粒体DNA共扩增出216条片段,其中以休眠包囊线粒体DNA为模板扩增出35条特有片段,以营养细胞线粒体DNA为模板扩增出47条特有片段,两者有38%的差异。结果表明,膜状急纤虫休眠包囊与营养期的大核DNA结构存在显著的差异;两者的线粒体DNA结构也存在较大差异。这表明,膜状急纤虫在包囊形成过程中,大核及线粒体DNA结构可能都发生了一定的变化,并且这些变化可能与包囊形成过程中的形态结构和代谢活动等剧烈变化以及休眠状态下的生理生化变化密切相关。  相似文献   

2.
Summary Hybridization characteristics of purified chloroplast DNA, immobilized in dot blots on nitrocellulose filters using radiolabeled chloroplast DNA restriction fragments or recombinant DNA probes were investigated. Conditions are described which provide a near linear relationship between amounts of hybridization and amounts of immobilized DNA. A standard curve constructed using such data provided a simple means for quantizing specific chloroplast DNA sequences in partially purified total DNA from protoplast extracts. Using this technique, DNA sequences corresponding to about 0.01 % of the total immobilized DNA could be detected.  相似文献   

3.
Unscheduled DNA synthesis (UDS) is the final stage of the process of repair of DNA lesions induced by UVC. We detected UDS using a DNA precursor, 5-ethynyl-2′-deoxyuridine (EdU). Using wide-field, confocal and super-resolution fluorescence microscopy and normal human fibroblasts, derived from healthy subjects, we demonstrate that the sub-nuclear pattern of UDS detected via incorporation of EdU is different from that when BrdU is used as DNA precursor. EdU incorporation occurs evenly throughout chromatin, as opposed to just a few small and large repair foci detected by BrdU. We attribute this difference to the fact that BrdU antibody is of much larger size than EdU, and its accessibility to the incorporated precursor requires the presence of denatured sections of DNA. It appears that under the standard conditions of immunocytochemical detection of BrdU only fragments of DNA of various length are being denatured. We argue that, compared with BrdU, the UDS pattern visualized by EdU constitutes a more faithful representation of sub-nuclear distribution of the final stage of nucleotide excision repair induced by UVC. Using the optimized integrated EdU detection procedure we also measured the relative amount of the DNA precursor incorporated by cells during UDS following exposure to various doses of UVC. Also described is the high degree of heterogeneity in terms of the UVC-induced EdU incorporation per cell, presumably reflecting various DNA repair efficiencies or differences in the level of endogenous dT competing with EdU within a population of normal human fibroblasts.  相似文献   

4.
Efficient molecular cloning of environmental DNA from geothermal sediments   总被引:5,自引:0,他引:5  
An efficient and simple method for constructing an environmental library using mechanically sheared DNA obtained directly from geothermal sediments is presented. The method is based on blunt-end modification of DNA fragments followed by 3-adenylation using Vent DNA polymerase and Taq DNA polymerase, respectively. The prepared DNA fragments are then ligated into a TA cloning vector and used in the transformation of Escherichia coli. This method has been successfully applied to the cloning of ORFs derived from uncultivated prokaryotes present in geothermal sediment.  相似文献   

5.
6.
Since the invention of PCR, many adaptation techniques have been developed for sequencing DNA fragments flanking known sequences. Of them, inverse PCR is a matter of interest because of the simplicity of its principle. However, the protocols for inverse PCR introduced so far consist of some time-consuming procedures, and with them, we cannot "walk" chromosomes too far since the number of suitable restriction enzymes is limited. Our experiments led to confirming simpler technical approaches applicable to the case of bacterial chromosomes, that is, designing two end-specific "contextual" sequences with which we can quickly detect the desired clones of targeted DNA fragments by simply analyzing PCR products, employing "the minimum value of the desired fragments" as a "discriminating minimum" value to decrease contaminant DNA fragments, and creating a new tandem of two cleaved end fragments of a known sequence ("reordering") for PCR amplification in combination with cloning of the inverse PCR-generated DNA. With the improvements, we could both simplify the procedures and broaden the capacity of the inverse PCR in "walking" chromosomes.  相似文献   

7.
Circular (e.g. simian virus 40) and linear (e.g. λ phage) DNAs have been labeled to high specific radioactivities (>108 cts/min per μg) in vitro using deoxynucleoside [α-32P]triphosphates (100 to 250 Ci/mmol) as substrates and the nick translation activity of Escherichia coli DNA polymerase I. The reaction product yields single-stranded fragments about 400 nucleotides long following denaturation. Because restriction fragments derived from different regions of the nick-translated DNA have nearly the same specific radioactivity (cts/min per 10[su3] bases), we infer that nicks are introduced, and nick translation is initiated, with equal probability within all internal regions of the DNA. Such labeled DNAs (and restriction endonuclease fragments derived from them) are useful probes for detecting rare homologous sequences by in situ hybridization and reassociation kinetic analysis.  相似文献   

8.
Homologies between nuclear and plastid DNA in spinach   总被引:3,自引:0,他引:3  
Summary Homologies between spinach nuclear (n) DNA and Chloroplast (pt) DNA, have been detected with a clone bank of spinach ptDNA as hybridization probes to restriction fragments of nDNA prepared from purified root nuclei. Every cloned fragment of ptDNA showed homologies to discrete restriction fragments of nDNA, different from those of ptDNA, indicating integration of these homologies into nDNA. While most ptDNA clones were relatively large and probably contained several genes, sequence homologies were also found to the cloned plastid gene for RuBP carboxylase and the subunit of ptATPase. Many of the homologies in nDNA occur in regions of the genome that are highly methylated and are not digested by the methylation sensitive restriction endonucleases HpaII and MspI. In contrast these enzymes cleave ptDNA into small fragments which allows the nDNA homologies to be distinguished in total root DNA. The sequence homologies observed were not due to contaminating non nuclear sequences as shown by hybridization to mitochondrial (mt) and bacterial DNAs. The total amount of homology to ptDNA in nDNA is equivalent to about five copies of the plastome per haploid nuclear genome. The homologies generally appear to be in individual segments of less than 2 kbp in length, integrated into several different places in the genome.On sabbatical leave from Department of Botany, University College, Dublin, Ireland  相似文献   

9.
M Kobayashi  K Koike 《Gene》1979,6(2):123-136
Rat mtDNA has a molecular length of about 16 kilobase (kb) pairs and is cleaved into seven fragments by restriction endonuclease EcoRI. These fragments were cloned in Escherichia coli K-12 host using lambda gtWES.lambda B' (lambda gtWES.lambda B, for short, in this paper) as a vector. Recombinant DNAs containing one or a few fragments of the mtDNA were transfected to CaCl2-treated E. coli, and the plaques containing specific recombinant phages were selected. DNA amplified in the recombinanat phage lambda gt.mt was shown to contain the same restriction endonuclease cleavage sites as those found in the mtDNA. Present results permitted the DNA sequencing of any portion of the mitochondrial genome.  相似文献   

10.
A strategy employing T4 DNA polymerase replacement synthesis is described whereby only the insert portion of recombinant plasmids are radioisotopically labeled. Prior purification of the inserted DNA is not required. The recombinant plasmid is first digested with one or more restriction endonucleases selected to cleave the vector segment into fragments at least 30% shorter than the insert DNA segment. This mixture of fragments is then digested by the T4 DNA polymerase-associated 3′ exonuclease in the absence of deoxynucleoside triphosphates (dNTPs) for a length of time which allows complete degradation of all fragments shorter than the insert. The remaining insert DNA, which is now partially single-stranded, is then resynthesized by addition of dNTPs, one or more of which is labeled. The resulting DNA is full length, doublestranded, and unnicked. The strategy is widely applicable, and reliably and reproducibly yields DNA of high specific activity. We have used this method to label more than 15 cloned inserts ranging in size from 3.2 to 25 kilobases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号