首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
玉米根系水流导度差异及其与解剖结构的关系   总被引:3,自引:0,他引:3  
在人工气候室水培条件下,从单根水平研究了不同水分条件下玉米根系水流导度的基因型差异及解剖结构之间的关系.结果表明,抗旱性的杂交种户单四号具有水流导度上的杂种优势现象,不抗旱的父本803根系水流导度最低,3个品种根系水流导度大小为F1代户单四号>母本天四>父本803;水分胁迫普遍降低了根系直径、导管直径和皮层厚度.同时,玉米品种根系的解剖结构和根系水流导度有关,正常水分条件下,根系导管直径与3个玉米品种的根系水流导度呈正相关,胁迫条件下则呈负相关.无论是在胁迫还是正常水分条件下,根系皮层厚度占根系直径的比例与根系水流导度都呈负相关,说明根系皮层是根系吸收水分的主要阻力部位.  相似文献   

2.
玉米根系水流导度差异的生理形态原因分析   总被引:3,自引:1,他引:2  
在人工气候室水培条件下,研究了水分胁迫对不同基因型玉米杂交种及其亲本根系水流导度(Lpr)变化的影响,并从生理和形态角度对其差异进行了分析。结果表明:表型抗旱的杂交种F1代(户单四号)整株根系水流导度最高,具有根系水流导度上的杂种优势现象。对其差异的生理和形态因素分析表明,F1代水流导度高与其高脯氨酸含量、低MDA含量和低质膜透忡有关。同时表明,根系的形态特征对根系的水流导度也存在一定的影响。  相似文献   

3.
在新疆的气候生态条件下,选用北疆2个棉花(Gossypium hirsutum)主栽品种‘新陆早13号’和‘新陆早33号’为供试材料,设置限根(RR)与对照(CK)处理,每个处理设置4个水氮水平:水氮亏缺(W0N0)、水分亏缺(W0N1)、氮素亏缺(W1N0)与水氮适量(W1N1),组成再裂区试验方案.采用管栽方法,通过人工改变根系垂直生长深度和水氮供应,在棉花产量形成期测定根系及叶片抗氧化保护酶系活性、生物量累积及分配等,探讨根域限制及水氮供应对棉花根系生长及叶片衰老的影响机理.结果表明:根域限制条件下,棉花根系生物量、根系与叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)与过氧化氢酶(CAT)活性、棉株总生物量、根冠比均低于对照,而地上部生物量与籽棉产量显著高于对照.水氮供应能有效地调节根系及叶片的生长,不同水氮处理间棉花根系与叶片抗氧化保护酶系活性、叶绿素含量、地上部生物量及籽棉产量均表现为W1N1> W0N1> W1N0>W0N0,根冠比与根系生物量的表现与之相反.根域限制与水氮供应表现出互作优势,根域限制下适量水氮供应处理的地上部生物量与籽棉产量均明显高于其他处理,根冠比较低.因此,在棉花根系生长受限的条件下,优化生育期间水氮供应,可以增强根系及叶片的抗氧化保护酶系活性、增加光合产物向地上部的分配比例、增加产量,是进一步挖掘膜下滴灌棉花增产潜力的有效途径.  相似文献   

4.
水分亏缺下玉米根系ZmPIP1亚族基因的表达   总被引:10,自引:0,他引:10  
在PEG-6000胁迫条件下,以微管蛋白基因为内参基因、水通道蛋白基因ZmPIP1-1和ZmPIP1-2为检测基因,采用半定量逆转录聚合酶链式反应(RT-PCR)体系检测它们在玉米根系中的表达情况。实验结果是:胁迫条件下,ZmPIP1-1的表达量在杂交F,代‘户单4号’(抗旱)和母本‘天四’(抗旱)根系中增多,它的表达量与品种的抗旱性呈正相关,并且胁迫不同时间段它的表达量有差异;而ZmPIP1-2在3个玉米品种的不同水分处理条件下,表达量均没有明显变化。这提示,水分胁迫条件下根系中某些种类的水通道蛋白基因的表达量增多,并且与品种的抗旱性有关;而另一些水通道蛋白基因的表达不受水分亏缺的影响。  相似文献   

5.
为了探明干旱胁迫下沼液对玉米幼苗抗旱、光合生理、形态的缓解效应,以中度抗旱玉米杂交种‘先玉335’和较强抗旱杂交种‘中单2号’为材料,采用10%聚乙二醇-6000模拟干旱胁迫,研究50%沼液根部浇灌处理对干旱胁迫下玉米幼苗生长和生理特性的影响。结果表明,沼液根部施用可以显著提高两品种玉米的抗旱性,有效缓解干旱胁迫对玉米幼苗根系和地上部生长的抑制作用,促进两品种玉米幼苗生长和提高根系活力,降低根冠比,且‘先玉335’的变幅更大;同时显著提高两品种叶片SOD、POD和CAT活性以及可溶性糖、脯氨酸、可溶性蛋白含量(‘中单2号’的CAT除外),降低MAD含量,且对‘中单2号’的影响更显著;沼液根施还可以显著提高干旱胁迫下两品种叶片的净光合速率(Pn)、蒸腾速率(Tr),降低气孔导度(Gs)、胞间CO_(2)浓度(Ci),但‘中单2号’的Tr和Gs除外,同时使两品种叶片叶绿素含量和水分利用效率(WUE)均显著增加。可见,沼液根施处理可以有效改善干旱胁迫下玉米幼苗的光合能力,显著提高幼苗抗氧化酶活性和渗透调节物质的含量,减轻膜脂过氧化程度,有效缓解干旱胁迫对2种不同抗旱性玉米幼苗的生长抑制,从而增强玉米耐受干旱胁迫的能力,且对‘中单2号’的缓解效果更明显。  相似文献   

6.
不同抗旱性花生品种的根系形态发育及其对干旱胁迫的响应   总被引:11,自引:0,他引:11  
丁红  张智猛  戴良香  宋文武  康涛  慈敦伟 《生态学报》2013,33(17):5169-5176
为明确不同抗旱性花生品种的根系形态发育特征,探讨其根系形态发育特征对不同土壤水分状况的响应机制,在防雨棚旱池内进行土柱栽培试验,研究抗旱型品种“花育22号”、“唐科8号”和干旱敏感型品种“花育23号”3个不同抗旱性花生品种根系形态发育特征及其对干旱胁迫的响应.结果表明:抗旱型品种根系较发达,具有较大的根系生物量、总根长、总根系表面积.干旱胁迫使抗旱型品种根系总表面积和体积增加,而干旱敏感型品种则相反.干旱胁迫显著增加抗旱型品种“花育22号”20 cm以下土层内根长密度分布比例及根系表面积和体积,但“唐科8号”相应根系性状仅在20-40 cm土层内增加;干旱胁迫使干旱敏感型品种“花育23号”40 cm以下土层内各根系性状升高,但未达显著水平且其深层土壤内各根系性状增加幅度小于“花育22号”.花生根系总长、总表面积及0-20 cm土层内根系性状与产量间呈显著或极显著正相关.土壤水分亏缺条件下,花生主要通过增加深层土壤内根长、根系表面积和体积等形态特性,优化空间分布构型,以调节植株对水分的利用.  相似文献   

7.
以两种不同抗旱性小麦品种幼苗为试验材料,采用PEG模拟干旱胁迫处理,探究干旱胁迫及复水对小麦幼苗叶片与根系脯氨酸累积及关键酶活性的影响。结果显示:(1)PEG胁迫下抗旱品种‘普冰143’根长和根干重下降不大,而水敏感品种‘郑引1号’根长和根干重下降显著;且于胁迫处理36h时‘普冰143’根系脯氨酸含量增加(75.0%)显著大于‘郑引1号’(37.7%),复水24h后均恢复至对照水平。(2)PEG胁迫下‘普冰143’叶片中谷氨酸合成途径关键酶P5CS和鸟氨酸合成途径关键酶δ-OAT活性均显著增加,且‘普冰143’叶片脯氨酸两条合成途径关键酶活性均得以加强;PEG胁迫处理36h时,‘郑引1号’叶片中P5CS活性增加显著,δ-OAT活性变化较小,且‘郑引1号’叶片脯氨酸合成可能以谷氨酸途径为主;但在PEG胁迫下两个不同抗旱性品种的根中P5CS、δ-OAT活性均变化较小。(3)PEG胁迫处理36h时‘普冰143’叶片脯氨酸降解酶PDH活性显著下降,而‘郑引1号’叶片PDH活性显著增加,复水后抗旱品种叶片该酶活性显著增加,水敏感品种恢复至对照水平;但PEG胁迫处理下两个不同抗旱性品种的根中PDH活性均显著下降。研究表明,PEG胁迫下小麦叶片是合成脯氨酸的主要部位,抗旱品种‘普冰143’根系脯氨酸持续积累与叶片中高的脯氨酸合成关键酶活性及脯氨酸转运有关。  相似文献   

8.
干旱低磷胁迫对不同品种小麦根系导水率的影响   总被引:7,自引:2,他引:5  
控制磷素水平,采用控制灌水量(正常供水、中度及重度干旱胁迫)的盆栽试验法,选择抗旱性小麦品种陕合6号(W1)和水分敏感型品种郑引1号(W2)为供试材料。用压力室法测定了三叶期的两品种小麦根系导水率(LPr)的变化规律。结果表明:陕合6号,在有磷正常供水处理( PH)下具有较高的导水率,干旱胁迫时LPr降低较少,且复水后有较强的恢复能力。郑引1号, PH的LPr值相对较小,干旱导致的根系导水率下降非常突出,复水后的恢复能力也较弱。另外,干旱胁迫对小麦苗期根系导水率的影响大于磷胁迫对其导水率的影响,且两品种小麦无磷止常供水处理(-PH)的LPr分别为 PH的31.9%和53.6%,即磷对前者LPr的影响大于后者。  相似文献   

9.
施肥对干旱胁迫下夏玉米根系提水的调节作用研究   总被引:4,自引:0,他引:4  
以耐旱性玉米品种'郑单958号'为材料,采用两室分根土培装置,通过时域反射计(TDR)对上下土层土壤含水量进行控制和观测,研究施肥对干旱胁迫条件下玉米根系提水作用的影响.结果表明,玉米根系在土层上干下湿条件下(即上下层土壤存在一定水势差时)存在明显提水作用;玉米根系提水量在整个生育期呈单峰变化,并以吐丝期最大;上层土壤施肥可以调节玉米根系提水作用强弱,整个生育期根系总提水量表现为NP配施>单施P>CK>单施N, NP配施处理全生育期单株提水量(1 948.6 g)分别是单施P处理、CK和单施N处理的1.5倍、3.1倍和3.5倍.玉米整个生育期根系总提水量与收获期不同层次根系干重和体积存在极显著正相关关系,也与其地上部分生物量和籽粒产量呈极显著或显著正相关关系.可见,玉米根系的提水作用强弱因生育期和施肥处理而变化,施肥主要通过影响根系生长来调节其提水作用;在一定水分环境条件下,玉米根系提水作用能促进作物生长,提高其籽粒产量.  相似文献   

10.
为研究混交过程中柏木根系分泌物对栾树细根生长的影响,以一年生栾树盆栽幼苗为研究对象,通过施加1株、2株、4株、8株4个浓度柏木根系分泌物(分别记为G1、G2、G4、G8)于栾树盆栽中,探讨柏木根系分泌物对栾树幼苗1~5级细根形态及N、P含量的影响。结果表明:(1)栾树细根直径随根序的增加而增大,施加根系分泌物显著减小了1~2级细根的直径(P0.05);细根比根长、比表面积均随根序的增加而减小,施加根系分泌物显著增大了1~2级细根的比根长及比表面积(P0.05);随根系分泌物施加浓度的提高,栾树比根长及比表面积先增大,而直径先减小,然后均趋于平缓波动的态势。(2)栾树细根N、P含量均随根序的增加而减小,而N/P在根序间的变化不显著;施加柏木根系分泌物显著增大了栾树1~2级细根的N、P含量(P0.05),但减小了1~5级细根的N/P;随根系分泌物施加浓度的提高,栾树细根P含量增大,N/P减小,而N含量先增加后呈现平缓变化的趋势。(3)栾树细根N、P含量均与其比根长、比表面积和直径等形态特征之间呈显著的相关关系(P0.05)。研究发现,柏木根系分泌物可改善土壤养分的有效性,从而缓解栾树植株的缺P症状,细根通过调整其形态以提高养分利用效率;柏木根系分泌物主要影响栾树1~2级细根的形态及N、P含量;4株柏木根系分泌物的剂量更有利于栾树根系的生长。  相似文献   

11.
Effects of low temperature (8 degrees C) on the hydraulic conductivity of young roots of a chilling-sensitive (cucumber, Cucumis sativus L.) and a chilling-resistant (figleaf gourd, Cucurbita ficifolia Bouche) crop have been measured at the levels of whole root systems (root hydraulic conductivity, Lp(r)) and of individual cortical cells (cell hydraulic conductivity, Lp). Exposure of roots to low temperature (LRT) for up to 6 d caused a stronger suberization of the endodermis in cucumber compared with figleaf gourd, but no development of exodermal Casparian bands in either species. Changes in anatomy after 6 d of LRT treatment corresponded with a reduction in hydrostatic root Lp(r) of cucumber roots by a factor of 24, and by a factor of 2 in figleaf gourd. In figleaf gourd, there was a reduction only in hydrostatic Lp(r) but not in osmotic Lp(r) suggesting that the activity of water channels was not much affected by LRT treatment in this species. Changes in cell Lp in response to chilling and recovery were similar to the root levels, although they were more intense at the root level. Activation energies (E(a)) and Q10 of water flow as measured at the cell level were high in cucumber (E(a)=109+/-13 kJ mol(-1); Q(10)=4.8+/-0.7; n=6-10 cells), but small in figleaf gourd (E(a)=11+/-2 kJ mol(-1); Q10=1.2+/-0.1; n=6-10 cells). Roots of figleaf gourd recovered better from LRT treatment than those of cucumber. In figleaf gourd, recovery (at both the root and cell level) often resulted in Lp and Lp(r) values which were even bigger than the original, i.e. there was an overshoot in hydraulic conductivity. These effects were larger for osmotic (representing the cell-to-cell passage of water) than for hydrostatic Lp(r). After a short-term (1 d) exposure to 8 degrees C followed by 1 d at 20 degrees C, hydrostatic Lp(r) of cucumber nearly recovered and that of figleaf gourd still remained higher due to the overshoot. By contrast, osmotic Lp(r) and cell Lp in both species remained high by a factor of 3 compared with the control, possibly due to an increased activity of water channels. After preconditioning of roots at LRT, increased hydraulic conductivity was completely inhibited by HgCl2 at both the root and cell levels. Different from figleaf gourd, recovery from chilling was not complete in cucumber after longer exposure to LRT. It is concluded that at LRT, both changes in the activity of aquaporins (AQPs) and alterations of root anatomy determine the water uptake in both species. The high temperature dependence of cell Lp in cucumber suggests conformational changes of AQPs during LRT treatment which result in channel closure and in a strong gating of AQP activity by low temperature. This mechanism is thought to be different from that in figleaf gourd where AQPs reacted in the conventional way, i.e. low temperature affected the mobility of water molecules in AQPs rather than their open/closed state, and Q(10) was low.  相似文献   

12.
Root hydraulic conductivity has been shown to decrease under phosphorus (P) deficiency. This study Investigated how the formation of aerenchyma is related to this change. Root anatomy, as well as root hydraulic conductivity was studied In maize (Zea mays L.) roots under different phosphorus nutrition conditions. Plant roots under P stress showed enhanced degradation of cortical cells and the aerenchyma formation was associated with their reduced root hydraulic conductivity, supporting our hypothesis that air spaces that form in the cortex of phosphorusstressed roots Impede the radial transport of water in a root cylinder. Further evidence came from the variation In aerenchyma formation due to genotypic differences. Five maize inbred lines with different porosity in their root cortex showed a significant negative correlation with their root hydraulic conductivity. Shoot relative water content was also found lower In P-deficient maize plants than that in P-sufficient ones when such treatment was prolonged enough, suggesting a limitation of water transport due to lowered root hydraulic conductivity of P-deficient plants.  相似文献   

13.
Hose E  Steudle E  Hartung W 《Planta》2000,211(6):874-882
Using root- and cell-pressure probes, the effects of the stress hormone abscisic acid (ABA) on the water-transport properties of maize roots (Zea mays L.) were examined in order to work out dose and time responses for root hydraulic conductivity. Abscisic acid applied at concentrations of 100–1,000 nM increased the hydraulic conductivity of excised maize roots both at the organ (root Lpr: factor of 3–4) and the root cell level (cell Lp: factor of 7–27). Effects on the root cortical cells were more pronounced than at the organ level. From the results it was concluded that ABA acts at the plasmalemma, presumably by an interaction with water channels. Abscisic acid therefore facilitated the cell-to-cell component of transport of water across the root cylinder. Effects on cell Lp were transient and highly specific for the undissociated (+)-cis-trans-ABA. The stress hormone ABA facilitates water uptake into roots as soils start drying, especially under non-transpiring conditions, when the apoplastic path of water transport is largely excluded. Received: 26 February 2000 / Accepted: 17 August 2000  相似文献   

14.
Water relation parameters including elastic modulus (epsilon), half-times of water exchange (T(w)(1/2)), hydraulic conductivity and turgor pressure (P) were measured in individual root cortical and cotyledon midrib cells in intact figleaf gourd (Cucurbita ficifolia) seedlings, using a cell pressure probe. Transpiration rates (E) of cotyledons were also measured using a steady-state porometer. The seedlings were exposed to low ambient (approximately 10 micromol m(-2) s(-1)) or high supplemental irradiance (approximately 300 micromol m(-2) s(-1) PPF density) at low (8 degrees C) or warm (22 degrees C) root temperatures. When exposed to low irradiance, all the water relation parameters of cortical cells remained similar at both root temperatures. The exposure of cotyledons to supplemental light at warm root temperatures, however, resulted in a two- to three-fold increase in T(w)(1/2) values accompanied with the reduced hydraulic conductivity in both root cortical (Lp) and cotyledon midrib cells (Lp(c)). Low root temperature (LRT) further reduced Lp(c) and E, whether it was measured under low or high irradiance levels. The reductions of Lp as the result of respective light and LRT treatments were prevented by the application of 1 microM ABA. Midrib cells required higher concentrations of ABA (2 microM) in order to prevent the reduction in Lp(c). When the exposure of cotyledons to light was accompanied by LRT, however, ABA proved ineffective in reversing the inhibition of Lp. LRT combined with high irradiance triggered a drastic 10-fold reduction in water permeability of cortical and midrib cells and increased epsilon and T(w)(1/2) values. Measurement of E indicated that the increased water demand by the transpiring plants was fulfilled by an increase in the apoplastic pathway as principal water flow route. The importance of water transport regulation by transpiration affecting the hydraulic conductivity of the roots is discussed.  相似文献   

15.
Hydrostatic pressure relaxations with the root pressure probe are commonly used for measuring the hydraulic conductivity (Lp(r)) of roots. We compared the Lp(r) of roots from species with different root hydraulic properties (Lupinus angustifolius L. 'Merrit', Lupinus luteus L. 'Wodjil', Triticum aestivum L. 'Kulin' and Zea mays L. 'Pacific DK 477') using pressure relaxations, a pressure clamp and osmotic gradients to induce water flow across the root. Only the pressure clamp measures water flow under steady-state conditions. Lp(r) determined by pressure relaxations was two- to threefold greater than Lp(r) from pressure clamps and was independent of the direction of water flow. Lp(r) (pressure clamp) was two- to fourfold higher than for Lp(r) (osmotic) for all species except Triticum aestivum where Lp(r) (pressure clamp) and Lp(r) (osmotic) were not significantly different. A novel technique was developed to measure the propagation of pressure through roots to investigate the cause of the differences in Lp(r). Root segments were connected between two pressure probes so that when root pressure (P(r)) was manipulated by one probe, the other probe recorded changes in P(r). Pressure relaxations did not induce the expected kinetics in pressure in the probe at the other end of the root when axial hydraulic conductance, and probe and root capacitances were accounted for. An electric circuit model of the root was constructed that included an additional capacitance in the root loaded by a series of resistances. This accounted for the double exponential kinetics for intact roots in pressure relaxation experiments as well as the reduced response observed with the double probe experiments. Although there were potential errors with all the techniques, we considered that the measurement of Lp(r) using the pressure clamp was the most unambiguous for small pressure changes, and provided that sufficient time was allowed for pressure propagation through the root. The differences in Lp(r) from different methods of measurement have implications for the models describing water transport through roots and the potential role of aquaporins.  相似文献   

16.
Water uptake by roots: effects of water deficit   总被引:35,自引:0,他引:35  
The variable hydraulic conductivity of roots (Lp(r)) is explained in terms of a composite transport model. It is shown how the complex, composite anatomical structure of roots results in a composite transport of both water and solutes. In the model, the parallel apoplastic and cell-to-cell (symplastic and transcellular) pathways play an important role as well as the different tissues and structures arranged in series within the root cylinder (epidermis, exodermis, cortex, endodermis, stelar parenchyma). The roles of Casparian bands and suberin lamellae in the root's endo- and exodermis are discussed. Depending on the developmental state of these apoplastic barriers, the overall hydraulic resistance of roots is either more evenly distributed across the root cylinder (young unstressed roots) or is concentrated in certain layers (exo- and endodermis in older stressed roots). The reason for the variability of root Lp(r), is that hydraulic forces cause a dominating apoplastic flow of water around protoplasts, even in the endodermis and exodermis. In the absence of transpiration, water flow is osmotic in nature which causes a high resistance as water passes across many membranes on its passage across the root cylinder. The model allows for a high capability of roots to take up water in the presence of high rates of transpiration (high demands for water from the shoot). By contrast, the hydraulic conductance is low, when transpiration is switched off. Overall, this results in a non-linear relationship between water flow and forces (gradients of hydrostatic and osmotic pressure) which is otherwise hard to explain. The model allows for special root characteristics such as a high hydraulic conductivity (water permeability) in the presence of a low permeability of nutrient ions once taken up into the stele by active processes. Low root reflection coefficients are in line with the idea of some apoplastic bypasses for water within the root cylinder. According to the composite transport model, the switch from the hydraulic to the osmotic mode is purely physical. In the presence of heavily suberized roots, the apoplastic component of water flow may be too small. Under these conditions, a regulation of radial water flow by water channels dominates. Since water channels are under metabolic control, this component represents an 'active' element of regulation. Composite transport allows for an optimization of the water balance of the shoot in addition to the well-known phenomena involved in the regulation of water flow (gas exchange) across stomata. The model is employed to explain the responses of plants to water deficit and other stresses. During water deficit, the cohesion-tension mechanism of the ascent of sap in the xylem plays an important role. Results are summarized which prove the validity of the coehesion/tension theory. Effects of the stress hormone abscisic acid (ABA) are presented. They show that there is an apoplastic component of the flow of ABA in the root which contributes to the ABA signal in the xylem. On the other hand, (+)-cis-trans-ABA specifically affects both the cell level (water channel activity) and water flow driven by gradients in osmotic pressure at the root level which is in agreement with the composite transport model. Hydraulic water flow in the presence of gradients in hydrostatic pressure remains unchanged. The results agree with the composite transport model and resemble earlier findings of high salinity obtained for the cell (Lp) and root (Lp(r)) level. They are in line with known effects of nutrient deprivation on root Lp(r )and the diurnal rhythm of root Lp(r )recently found in roots of LOTUS.  相似文献   

17.
Oxidative gating of water channels (aquaporins) in corn roots   总被引:1,自引:0,他引:1  
An oxidative gating of water channels (aquaporins: AQPs) was observed in roots of corn seedlings as already found for the green alga Chara corallina. In the presence of 35 mM hydrogen peroxide (H2O2)--a precursor of hydroxyl radicals (*OH)--half times of water flow (as measured with the aid of pressure probes) increased at the level of both entire roots and individual cortical cells by factors of three and nine, respectively. This indicated decreases in the hydrostatic hydraulic conductivity of roots (Lp(hr)) and of cells (Lp(h)) by the same factors. Unlike other stresses, the plant hormone abscisic acid (ABA) had no ameliorative effect either on root LP(hr) or on cell Lp(h) when AQPs were inhibited by oxidative stress. Closure of AQPs reduced the permeability of acetone by factors of two in roots and 1.5 in cells. This indicated that AQPs were not ideally selective for water but allowed the passage of the organic solute acetone. In the presence of H2O2, channel closure caused anomalous (negative) osmosis at both the root and the cell level. This was interpreted by the fact that in the case of the rapidly permeating solute acetone, channel closure caused the solute to move faster than the water and the reflection coefficient (sigma s) reversed its sign. When H2O2 was removed from the medium, the effects were reversible, again at both the root and the cell level. The results provide evidence of oxidative gating of AQPs, which leads on to inhibition of water uptake by the roots. Possible mechanisms of the oxidative gating of AQPs induced by H2O2 (*OH) are discussed.  相似文献   

18.
Cold acclimation process plays a vital role in the survival of chilling- and freezing-tolerant plants subjected to cold temperature stress. However, it remains elusive whether a cold acclimation process enhances root water uptake (a component of chilling tolerance) in chilling-sensitive crops such as rice. By analyzing the root hydraulic conductivity under cold stress for a prolonged time, we found that cold stress induced a gradual increase in root osmotic hydraulic conductivity [Lp(r(os))]. Compared with the control treatment (roots and shoots at 25°C), low root temperature (LRT) treatment (roots at 10°C; shoots at 25°C) dramatically reduced Lp(r(os)) within 1 h. However, Lp(r(os)) gradually increased during prolonged LRT treatment and it reached 10-fold higher values at day 5. Moreover, a coordinated up-regulation of root aquaporin gene expression, particularly OsPIP2;5, was observed during LRT treatment. Further, comparison of aquaporin gene expression under root-only chilling (LRT) and whole-plant chilling conditions, and in the roots of intact plants vs. shootless plants, suggests that a shoot to root signal is necessary for inducing the expression of aquaporin genes in the root. Collectively, these results demonstrate that a cold acclimation process for root water uptake functions in rice and is possibly regulated through aquaporins.  相似文献   

19.
The hydraulic conductivity of roots (Lpr) of 6- to 8-d-old maize seedlings has been related to the chemical composition of apoplastic transport barriers in the endodermis and hypodermis (exodermis), and to the hydraulic conductivity of root cortical cells. Roots were cultivated in two different ways. When grown in aeroponic culture, they developed an exodermis (Casparian band in the hypodermal layer), which was missing in roots from hydroponics. The development of Casparian bands and suberin lamellae was observed by staining with berberin-aniline-blue and Sudan-III. The compositions of suberin and lignin were analyzed quantitatively and qualitatively after depolymerization (BF3/methanol-transesterification, thioacidolysis) using gas chromatography/mass spectrometry. Root Lpr was measured using the root pressure probe, and the hydraulic conductivity of cortical cells (Lp) using the cell pressure probe. Roots from the two cultivation methods differed significantly in (i) the Lpr evaluated from hydrostatic relaxations (factor of 1.5), and (ii) the amounts of lignin and aliphatic suberin in the hypodermal layer of the apical root zone. Aliphatic suberin is thought to be the major reason for the hydrophobic properties of apoplastic barriers and for their relatively low permeability to water. No differences were found in the amounts of suberin in the hypodermal layers of basal root zones and in the endodermal layer. In order to verify that changes in root Lpr were not caused by changes in hydraulic conductivity at the membrane level, cell Lp was measured as well. No differences were found in the Lp values of cells from roots cultivated by the two different methods. It was concluded that changes in the hydraulic conductivity of the apoplastic rather than of the cell-to-cell path were causing the observed changes in root Lpr. Received: 17 March 1999 / Accepted: 22 June 1999  相似文献   

20.
Hydraulic conductivity of rice roots   总被引:18,自引:0,他引:18  
A pressure chamber and a root pressure probe technique have been used to measure hydraulic conductivities of rice roots (root Lp(r) per m(2) of root surface area). Young plants of two rice (Oryza sativa L.) varieties (an upland variety, cv. Azucena and a lowland variety, cv. IR64) were grown for 31-40 d in 12 h days with 500 micromol m(-2) s(-1) PAR and day/night temperatures of 27 degrees C and 22 degrees C. Root Lp(r) was measured under conditions of steady-state and transient water flow. Different growth conditions (hydroponic and aeroponic culture) did not cause visible differences in root anatomy in either variety. Values of root Lp(r) obtained from hydraulic (hydrostatic) and osmotic water flow were of the order of 10(-8) m s(-1) MPa(-1) and were similar when using the different techniques. In comparison with other herbaceous species, rice roots tended to have a higher hydraulic resistance of the roots per unit root surface area. The data suggest that the low overall hydraulic conductivity of rice roots is caused by the existence of apoplastic barriers in the outer root parts (exodermis and sclerenchymatous (fibre) tissue) and by a strongly developed endodermis rather than by the existence of aerenchyma. According to the composite transport model of the root, the ability to adapt to higher transpirational demands from the shoot should be limited for rice because there were minimal changes in root Lp(r) depending on whether hydrostatic or osmotic forces were acting. It is concluded that this may be one of the reasons why rice suffers from water shortage in the shoot even in flooded fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号