首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Melusin is a mammalian muscle specific CHORD containing protein capable of activating signal transduction pathways leading to cardiomyocytes hypertrophy in response to mechanical stress. To define melusin function we searched for molecular partners possibly involved in melusin dependent signal transduction. Here we show that melusin and heat shock proteins are co-regulated. Moreover, melusin directly binds to Hsp90, a ubiquitous chaperone involved in regulating several signaling pathways. In addition, melusin interacts with Sgt1, an Hsp90 binding molecule. Melusin does not behave as an Hsp90 substrate but rather as a chaperone capable to protect citrate synthase from heat induced aggregation. These results describe melusin as a new component of the Hsp90 chaperone machinery.  相似文献   

2.
Hsp90: a specialized but essential protein-folding tool   总被引:33,自引:0,他引:33  
Hsp90 is unique among molecular chaperones. The majority of its known substrates are signal transduction proteins, and recent work indicates that it uses a novel protein-folding strategy.  相似文献   

3.
Modulatory signal transduction commonly requires efficient "on demand" assembly of specific multicomponent cellular machines that convert signals to cellular actions. This article suggests that for these signaling machines to detect and respond to fluctuations in signal strength, they must be continuously disassembled in an energy-dependent process that probably involves molecular chaperones.  相似文献   

4.
Mammals have two cysteine- and histidine-rich domain (CHORD)-containing Hsp90 cochaperones, Chp-1 and melusin, which are homologs of plant Rar1. It has been shown previously that Rar1 CHORD directly interacts with ADP bound to the nucleotide pocket of Hsp90. Here, we report that ADP and ATP can bind to Hsp90 cochaperones Chp-1 and PP5, inducing their conformational changes. Furthermore, we demonstrate that Chp-1 and melusin can interact with cochaperones PP5 and Sgt1 and with each other in an ATP-dependent manner. Based on the known structure of the Rar1-Hsp90 complex, His-186 has been identified as an important residue of Chp-1 for ADP/ATP binding. His-186 is necessary for the nucleotide-dependent interaction of Chp-1 not only with Hsp90 but also with Sgt1. In addition, Ca2+, which is known to bind to melusin, enhances the interactions of melusin with Hsp90 and Sgt1. Furthermore, melusin acquires the ADP preference for Hsp90 binding in the presence of Ca2+. Our newly discovered nucleotide-dependent interactions between cochaperones might provide additional complexity to the dynamics of the Hsp90 chaperone system, also suggesting potential Hsp90-independent roles for these cochaperones.  相似文献   

5.
Protein chaperones direct the folding of polypeptides into functional proteins, facilitate developmental signalling and, as heat-shock proteins (HSPs), can be indispensable for survival in unpredictable environments. Recent work shows that the main HSP chaperone families also buffer phenotypic variation. Chaperones can do this either directly through masking the phenotypic effects of mutant polypeptides by allowing their correct folding, or indirectly through buffering the expression of morphogenic variation in threshold traits by regulating signal transduction. Environmentally sensitive chaperone functions in protein folding and signal transduction have different potential consequences for the evolution of populations and lineages under selection in changing environments.  相似文献   

6.
The function of the cellular prion protein (PrPC) remains obscure. Studies suggest that PrPC functions in several processes including signal transduction and Cu2+ metabolism. PrPC has also been established to bind nucleic acids. Therefore we investigated the properties of PrPC as a putative nucleic acid chaperone. Surprisingly, PrPC possesses all the nucleic acid chaperoning properties previously specific to retroviral nucleocapsid proteins. PrPC appears to be a molecular mimic of NCP7, the nucleocapsid protein of HIV-1. Thus PrPC, like NCP7, chaperones the annealing of tRNA(Lys) to the HIV-1 primer binding site, the initial step of retrovirus replication. PrPC also chaperones the two DNA strand transfers required for production of a complete proviral DNA with LTRs. Concerning the functions of NCP7 during budding, PrPC also mimices NCP7 by dimerizing the HIV-1 genomic RNA. These data are unprecedented because, although many cellular proteins have been identified as nucleic acid chaperones, none have the properties of retroviral nucleocapsid proteins.  相似文献   

7.
In alpha1-antitrypsin (alpha1-AT) deficiency, a mutant form of alpha1-AT polymerizes in the endoplasmic reticulum (ER) of liver cells resulting in chronic hepatitis and hepatocellular carcinoma by a gain of toxic function mechanism. Although some aspects of the cellular response to mutant alpha1-AT Z have been partially characterized, including the involvement of several proteasomal and nonproteasomal mechanisms for disposal, other parts of the cellular response pathways, particularly the chaperones with which it interacts and the signal transduction pathways that are activated, are still not completely elucidated. The alpha1-AT Z molecule is known to interact with calnexin, but, according to one study, it does not interact with Grp78. To carry out a systematic search for the chaperones with which alpha1-AT Z interacts in the ER, we used chemical cross-linking of several different genetically engineered cell systems. Mutant alpha1-AT Z was cross-linked with Grp78, Grp94, calnexin, Grp170, UDP-glucose glycoprotein:glucosyltransferase, and two unknown proteins of approximately 110-130 kDa. Sequential immunoprecipitation/immunoblot analysis and coimmunoprecipitation techniques demonstrated each of these interactions without chemical cross-linking. The same chaperones were found to interact with two nonpolymerogenic alpha1-AT mutants that are retained in the ER, indicating that these interactions are not specific for the alpha1-AT Z mutant. Moreover, sucrose density gradient centrifugation studies suggest that approximately 85% of alpha1-AT Z exists in heterogeneous soluble complexes with multiple chaperones and approximately 15% in extremely large polymers/aggregates devoid of chaperones. Agents that perturb the synthesis and/or activity of ER chaperones such as tunicamycin and calcium ionophore A23187, have different effects on the solubility and degradation of alpha1-AT Z as well as on its residual secretion.  相似文献   

8.
Disruption of protein homeostasis in mitochondria elicits a cellular response, which upregulates mitochondrial chaperones and other factors that serve to remodel the mitochondrial-folding environment. In a recent study, Haynes and colleagues uncovered a novel signal transduction pathway underlying this process. The upstream mitochondrial component of this pathway is an orthologue of Escherichia coli ClpP, which functions in the bacterial heat-shock response. These findings suggest that molecular aspects of stress sensing might be conserved between bacteria and mitochondria.  相似文献   

9.
Molecular chaperones participate in the maintenance of cellular protein homeostasis, cell growth and differentiation, signal transduction, and development. Although a vast body of information is available regarding individual chaperones, few studies have attempted a systems level analysis of chaperone function. In this paper, we have constructed a chaperone interaction network for the malarial parasite, Plasmodium falciparum. P. falciparum is responsible for several million deaths every year, and understanding the biology of the parasite is a top priority. The parasite regularly experiences heat shock as part of its life cycle, and chaperones have often been implicated in parasite survival and growth. To better understand the participation of chaperones in cellular processes, we created a parasite chaperone network by combining experimental interactome data with in silico analysis. We used interolog mapping to predict protein-protein interactions for parasite chaperones based on the interactions of corresponding human chaperones. This data was then combined with information derived from existing high-throughput yeast two-hybrid assays. Analysis of the network reveals the broad range of functions regulated by chaperones. The network predicts involvement of chaperones in chromatin remodeling, protein trafficking, and cytoadherence. Importantly, it allows us to make predictions regarding the functions of hypothetical proteins based on their interactions. It allows us to make specific predictions about Hsp70-Hsp40 interactions in the parasite and assign functions to members of the Hsp90 and Hsp100 families. Analysis of the network provides a rational basis for the anti-malarial activity of geldanamycin, a well-known Hsp90 inhibitor. Finally, analysis of the network provides a theoretical basis for further experiments designed toward understanding the involvement of this important class of molecules in parasite biology.  相似文献   

10.
The 70kDa heat shock proteins (Hsp70) are molecular chaperones that assist in folding of newly synthesized polypeptides, refolding or denaturation of misfolded proteins, and translocation of proteins across biological membranes. In addition, Hsp70 play regulatory roles in signal transduction, cell cycle, and apoptosis. Here, we present a novel assay platform based on fluorescence polarization that is suitable for investigating the yet elusive molecular mechanics of human Hsp70 allosteric regulation.  相似文献   

11.
It is becoming clear that receptors that initiate signal transduction by interacting with G-proteins do not function as monomers, but often require accessory proteins for function. Some of these accessory proteins are chaperones, required for correct transport of the receptor to the cell surface, but the function of many accessory proteins remains unknown. We determined the role of an accessory protein for the receptor for calcitonin gene-related peptide (CGRP), a potent vasodilator neuropeptide. We have previously shown that this accessory protein, the CGRP-receptor component protein (RCP), is expressed in CGRP responsive tissues and that RCP protein expression correlates with the biological efficacy of CGRP in vivo. However, the function of RCP has remained elusive. In this study stable cell lines were made that express antisense RCP RNA, and CGRP- and adrenomedullin-mediated signal transduction were greatly reduced. However, the loss of RCP did not effect CGRP binding or receptor density, indicating that RCP did not behave as a chaperone but was instead coupling the CGRP receptor to downstream effectors. A candidate CGRP receptor named calcitonin receptor-like receptor (CRLR) has been identified, and in this study RCP co-immunoprecipitated with CRLR indicating that these two proteins interact directly. Since CGRP and adrenomedullin can both signal through CRLR, which has been previously shown to require a chaperone protein for function, we now propose that a functional CGRP or adrenomedullin receptor consists of at least three proteins: the receptor (CRLR), the chaperone protein (RAMP), and RCP that couples the receptor to the cellular signal transduction pathway.  相似文献   

12.
Mounting evidence is merging to affirm the effectiveness of bacterial lipopolysaccharides (LPS) as biological control agents, inducers of innate immunity, and to stimulate/potentiate the development of defense responses in plants through protein phosphorylation-mediated signal perception/transduction responses. In vivo labeling of protein phosphorylation events during signal transduction indicated the rapid phosphorylation of several proteins. Substantial differences and de novo LPS-induced phosphorylation were also observed with two-dimensional analysis. In this study, qualitative and quantitative changes in phosphoproteins of Nicotiana tabacum suspension cells during elicitation by LPS from the Gram-negative bacteria, Burkholderia cepacia, were analyzed using two-dimensional electrophoresis in combination with a phosphoprotein-specific gel stain. Trypsin digested phosphoproteins were analyzed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/MS) and nano-electrospray-ionization liquid chromatography tandem mass spectrometry (nano-ESI-LC/MS/MS). A total of 27 phosphoproteins were identified from 23 excised gel spots. The identified phosphoproteins indicate that LPS(B.cep)-induced signal perception/transduction involves G-protein coupled receptor signaling, Ca(2+)/calmodulin-dependent signaling pathways, H(+)-ATPase regulation of intracellular pH, thioredoxin-mediated signaling and phosphorylation of 14-3-3 regulatory proteins. Other targets of LPS(B.cep)-responsive phosphorylation included NTP pool maintenance, heat shock proteins, protein biosynthesis and chaperones as well as cytoskeletal tubulin. The results add novel insights into the biochemical process of LPS perception and resulting signal transduction.  相似文献   

13.
Molecular chaperone targeting and regulation by BAG family proteins   总被引:1,自引:0,他引:1  
Regulated changes in protein conformation can have profound effects on protein function, although routine laboratory methods often fail to detect them. The recently discovered BAG-family proteins may operate as bridging molecules that recruit molecular chaperones to target proteins, presumably modulating protein functions through alterations in their conformations, and ultimately affecting diverse cellular behaviours including cell division, migration, differentiation and death. Emerging knowledge about BAG-family proteins indicates that there may be a mechanism for influencing signal transduction through non-covalent post-translational modifications.  相似文献   

14.
非洲菊亲环素家族基因GCyP的克隆与生物信息学分析   总被引:2,自引:0,他引:2  
亲环素(Cyclophilins,CyPs)具有肽脯氨酰顺反异构酶活性,催化蛋白质折叠过程,并且起着分子伴侣的作用,同时参与mRNA加工和信号转导等生物学过程.本研究在抑制性消减杂交获得表达序列标签(EST)的基础上,通过生物信息学方法获得了非洲菊亲环素家族基因GCyP的cDNA.进而设计特异引物,以非洲菊舌状花为材料,通过RT-PCR扩增并经T-A克隆后测序,获得一条长度为732 bp的序列.该序列经生物信息学分析确认其为GCyP,编码的GCyP含172个氨基酸残基,属于单结构域胞质型亲环素.GCyP序列提交GenBank后接收,登录号为EU1269167.  相似文献   

15.
Chaperones are centrally involved in the control of protein structure, function, localization and transport. A flurry of scientific activity continues to examine the molecular nature of chaperone-substrate recognition and the role of auxiliary chaperones (cohort proteins) and small molecules that expedite these processes. Chaperones have been implicated in processes as diverse as protein secretion, nuclear transport, thermotolerance, the steroid receptor signal transduction pathway, T-cell receptor and major histocompatibility complex class I and II multimeric assembly and bacterial virulence.  相似文献   

16.
17.
When it is attacked by a pathogen, a plant produces a range of defense-related proteins. Many of these are synthesized by the rough endoplasmic reticulum (RER) to be secreted from the cell or deposited in vacuoles. Genes encoding endoplasmic reticulum (ER)-resident chaperones, such as the lumenal binding protein (BiP), are also induced under these conditions. Here, we show that BiP induction occurs systemically throughout the plant. Furthermore, this induction occurs rapidly and precedes expression of genes encoding pathogenesis-related (PR) proteins. The underlying signal transduction pathway was shown to be independent of the signaling molecule salicylic acid and the unfolded protein response pathway. In addition, BiP induction was independent of PR gene induction. Overproduction of BiP alone was not sufficient to cause induction of PR gene expression; however, limiting the amount of BiP in the ER lumen via superimposed ER stress inhibited the induction of PR gene expression. We propose that the induction of BiP expression during plant-pathogen interactions is required as an early response to support PR protein synthesis on the RER and that a novel signal transduction pathway exists to trigger this rapid response.  相似文献   

18.
The hsp90-based chaperone machinery is implicated in numerous cellular processes including signal transduction, genomic silencing, and protein degradation. Hop is a component of the animal hsp90 multichaperone complex, whose function is to link the two chaperones, hsp90 and hsp70. Currently there exists little information on a plant Hop homologue. Herein it is reported that a 70-kDa protein in wheat germ lysate is associated with hsp90 and hsp70 and that this protein is a wheat homologue of Hop. It is also shown that, in addition to being detected in complexes, the wheat Hop as well as the previously identified immunophilin FKBP73, can bind directly to purified plant hsp90. In the steroid receptor folding assay, the wheat Hop was not detected in receptor complexes, but the wheat immunophilin FKBP73 could be detected when mammalian p23 was added to the plant lysate. The present results identify two hsp90-binding proteins and provide a useful framework on which to further investigate their functions.  相似文献   

19.
The life cycle of Acanthamoeba consists of two stages, trophozoite and cyst. The cyst form is resistant to almost all antibiotics. By long term cultivation, Acanthamoeba severely attenuated the encysting ability. To determine the changing of gene expression by the long term cultivation, especially focusing an encystation mediating factors, this study compared the ESTs of the fresh strain and the old strain, and trophozoite. Comparison of the KOG (euKaryotic Orthologous Groups) analysis relative to trophozoite revealed higher percentages of cyst ESTs related to G (Carbohydrate transport and metabolism), H (Coenzyme transport and metabolism), I (Lipid transport and metabolism), D (Cell cycle control, cell division, chromosome partitioning), T (signal transduction mechanisms), and O (Posttranslational modification, protein turnover, chaperones). In addition to this result, KOG analysis of fresh strain relative to old strain showed higher percentage of cyst ESTs related to metabolism category and T (signal transduction mechanisms) article. ESTs of the fresh strain revealed more various gene profiles compared to the old strain including encystation mediating factors like autophagy related proteins (Z article) and signal transduction proteins (T article). Twenty seven kinds of protein kinase C (PKC) like genes were detected in cyst or trophozoite ESTs and twenty one of them were highly expressed during encystation. The information of the expressed genes during encystation in only the fresh strain will provide new clues to understanding the encystation mechanism of encysting protozoa including Acanthamoeba.  相似文献   

20.
Protein kinases whose activity is detectable only in the presence of sphingosine (Sph) or N,N'-dimethyl-Sph (DMS), but not in the presence of 15 other sphingolipids, phospholipids, and glycerolipids tested (Megidish, T., et al. (1995) Biochem. Biophys. Res. Commun. 216, 739-747), have been termed "sphingosine-dependent kinases" (SDKs). We showed previously that a purified SDK (termed "SDK1") phosphorylates a specific Ser position of adapter/chaperone protein 14-3-3 isoforms beta, eta, and zeta but not tau or sigma (Megidish, T., et al. (1998) J. Biol. Chem. 273, 21834-45). In this study we found the following: (i) other SDKs with different substrate specificities are present in cytosolic and membrane extracts of mouse Balb/c 3T3 (A31) fibroblasts. (ii) The activation of these SDKs is specific to D-erythro-Sph and its N-methyl derivatives, the effect of L-threo-Sph or its N-methyl derivatives is minimal, and nonspecific cationic amphiphiles have no effect at all. An SDK separated as fractions "TN31-33" phosphorylated a 50 kDa substrate which was identified as calreticulin, as well as two endogenous substrates with molecular mass 58 and 55 kDa, both identified as protein disulfide isomerase (PDI). This SDK, which specifically phosphorylates calreticulin and PDI, both molecular chaperones found at high levels in endoplasmic reticulum, is tentatively termed "SDK2". Another SDK activity was copurified with glucose-regulated protein (GRP) and heat shock proteins (HSP). One GRP substrate had the same amino acid sequence as GRP94 (synonym: endoplasmin); another HSP substrate had the same amino acid sequence as mouse HSP86 or HSP84, the analogues of human HSP90. An SDK activity separated and present in "fraction 42" from Q-Sepharose chromatography specifically phosphorylated GRP105 (or GRP94) and HSP68 but did not phosphorylate PDI or 14-3-3. This SDK is clearly different from other SDKs in its substrate specificity and is tentatively termed "SDK3". Interestingly, substrates of all these SDKs so far identified are molecular chaperones or adapters capable of binding to enzymes and key molecules involved in signal transduction, maintaining tertiary structure of bioactive molecules, or maintaining cellular homeostasis in response to environmental stress. Thus, the essential role of Sph and DMS is to activate molecular chaperones, thereby providing a link to the mechanism by which SDK activity regulates cellular homeostasis and signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号