首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 789 毫秒
1.
In eukaryotes, protein transport into the endoplasmic reticulum (ER) is facilitated by a protein-conducting channel, the Sec61 complex. The presence of large, water-filled pores with uncontrolled ion permeability, such as those formed by Sec61 complexes in the ER membrane, would interfere with the regulated release of calcium from the ER lumen into the cytosol, an essential mechanism of intracellular signaling. We identified a calmodulin (CaM) binding motif in the cytosolic N-terminus of Sec61α from Canis familiaris that binds CaM, but not Ca(2+)-free apo-CaM, with nanomolar affinity and sequence specificity. In single channel lipid bilayer measurements, CaM potently mediated Sec61-channel closure in a Ca(2+)-dependent manner. No functional CaM binding motif was identified in the corresponding region of Sec61p from Saccharomyces cerevisiae, and no channel closure occurred in the presence of CaM and Ca(2+). Therefore, CaM binding to the cytosolic N-terminus of Sec61α is involved in limiting Ca(2+)-leakage from the ER in C. familiaris but not S. cerevisiae.  相似文献   

2.
In eukaryotes, protein transport into the endoplasmic reticulum (ER) is facilitated by a protein-conducting channel, the Sec61 complex. The presence of large, water-filled pores with uncontrolled ion permeability, as formed by Sec61 complexes in the ER membrane, would seriously interfere with the regulated release of calcium from the ER lumen into the cytosol, an essential mechanism for intracellular signalling. We identified a calmodulin (CaM)-binding motif in the cytosolic N-terminus of mammalian Sec61α that bound CaM but not Ca2+-free apocalmodulin with nanomolar affinity and sequence specificity. In single-channel measurements, CaM potently mediated Sec61-channel closure in Ca2+-dependent manner. At the cellular level, two different CaM antagonists stimulated calcium release from the ER through Sec61 channels. However, protein transport into microsomes was not modulated by Ca2+-CaM. Molecular modelling of the ribosome/Sec61/CaM complexes supports the view that simultaneous ribosome and CaM binding to the Sec61 complex may be possible. Overall, CaM is involved in limiting Ca2+ leakage from the ER.  相似文献   

3.
According to live-cell calcium-imaging experiments, the Sec61 complex is a passive calcium-leak channel in the human endoplasmic reticulum (ER) membrane that is regulated by ER luminal immunoglobulin heavy chain binding protein (BiP) and cytosolic Ca2+-calmodulin. In single channel measurements, the open Sec61 complex is Ca2+ permeable. It can be closed not only by interaction with BiP or Ca2+-calmodulin, but also with Pseudomonas aeruginosa Exotoxin A which can enter human cells by retrograde transport. Exotoxin A has been shown to interact with the Sec61 complex and, thereby, inhibit ER export of immunogenic peptides into the cytosol. Here, we show that Exotoxin A also inhibits passive Ca2+ leakage from the ER in human cells, and we characterized the N-terminus of the Sec61 α-subunit as the relevant binding site for Exotoxin A.  相似文献   

4.
According to live-cell calcium-imaging experiments, the Sec61 complex is a passive calcium-leak channel in the human endoplasmic reticulum (ER) membrane that is regulated by ER luminal immunoglobulin heavy chain binding protein (BiP) and cytosolic Ca2+-calmodulin. In single channel measurements, the open Sec61 complex is Ca2+ permeable. It can be closed not only by interaction with BiP or Ca2+-calmodulin, but also with Pseudomonas aeruginosa Exotoxin A which can enter human cells by retrograde transport. Exotoxin A has been shown to interact with the Sec61 complex and, thereby, inhibit ER export of immunogenic peptides into the cytosol. Here, we show that Exotoxin A also inhibits passive Ca2+ leakage from the ER in human cells, and we characterized the N-terminus of the Sec61 α-subunit as the relevant binding site for Exotoxin A.  相似文献   

5.
In mammalian cells, signal peptide-dependent protein transport into the endoplasmic reticulum (ER) is mediated by a dynamic polypeptide-conducting channel, the heterotrimeric Sec61 complex. Previous work has characterized the Sec61 complex as a potential ER Ca2+ leak channel in HeLa cells and identified ER lumenal molecular chaperone immunoglobulin heavy-chain-binding protein (BiP) as limiting Ca2+ leakage via the open Sec61 channel by facilitating channel closing. This BiP activity involves binding of BiP to the ER lumenal loop 7 of Sec61α in the vicinity of tyrosine 344. Of note, the Y344H mutation destroys the BiP binding site and causes pancreatic β-cell apoptosis and diabetes in mice. Here, we systematically depleted HeLa cells of the BiP co-chaperones by siRNA-mediated gene silencing and used live cell Ca2+ imaging to monitor the effects on ER Ca2+ leakage. Depletion of either one of the ER lumenal BiP co-chaperones, ERj3 and ERj6, but not the ER membrane-resident co-chaperones (such as Sec63 protein, which assists BiP in Sec61 channel opening) led to increased Ca2+ leakage via Sec6 complex, thereby phenocopying the effect of BiP depletion. Thus, BiP facilitates Sec61 channel closure (i.e. limits ER Ca2+ leakage) via the Sec61 channel with the help of ERj3 and ERj6. Interestingly, deletion of ERj6 causes pancreatic β-cell failure and diabetes in mice and humans. We suggest that co-chaperone-controlled gating of the Sec61 channel by BiP is particularly important for cells, which are highly active in protein secretion, and that breakdown of this regulatory mechanism can cause apoptosis and disease.  相似文献   

6.
TRPM3 has been reported to play an important role in Ca2+ homeostasis, but its gating mechanisms and regulation via Ca2+ are unknown. Ca2+ binding proteins such as calmodulin (CaM) could be probable modulators of this ion channel. We have shown that this protein binds to two independent domains, A35-K124 and H291-G382 on the TRPM3 N-terminus, which contain conserved hydrophobic as well as positively charged residues in specific positions, and that these residues have a crucial impact on its binding. We also showed that another Ca2+ binding protein, S100A1, is able to bind to these regions and that CaM and S100A1 compete for these binding sites on the TRPM3 N-terminus. Moreover, our results suggest that another very important TRP channel activity modulator, PtdIns(4,5)P2, interacts with the CaM/S100A1 binding sites on the TRPM3 N-terminus with high affinity.  相似文献   

7.
In mammalian cells, signal peptide-dependent protein transport into the endoplasmic reticulum (ER) is mediated by a dynamic protein-conducting channel, the Sec61 complex. Previous work has characterized the Sec61 channel as a potential ER Ca(2+) leak channel and identified calmodulin as limiting Ca(2+) leakage in a Ca(2+)-dependent manner by binding to an IQ motif in the cytosolic aminoterminus of Sec61α. Here, we manipulated the concentration of the ER lumenal chaperone BiP in cells in different ways and used live cell Ca(2+) imaging to monitor the effects of reduced levels of BiP on ER Ca(2+) leakage. Regardless of how the BiP concentration was lowered, the absence of available BiP led to increased Ca(2+) leakage via the Sec61 complex. When we replaced wild-type Sec61α with mutant Sec61αY344H in the same model cell, however, Ca(2+) leakage from the ER increased and was no longer affected by manipulation of the BiP concentration. Thus, BiP limits ER Ca(2+) leakage through the Sec61 complex by binding to the ER lumenal loop 7 of Sec61α in the vicinity of tyrosine 344.  相似文献   

8.
TRPM3 has been reported to play an important role in Ca2+ homeostasis, but its gating mechanisms and regulation via Ca2+ are unknown. Ca2+ binding proteins such as calmodulin (CaM) could be probable modulators of this ion channel. We have shown that this protein binds to two independent domains, A35-K124 and H291-G382 on the TRPM3 N-terminus, which contain conserved hydrophobic as well as positively charged residues in specific positions, and that these residues have a crucial impact on its binding. We also showed that another Ca2+ binding protein, S100A1, is able to bind to these regions and that CaM and S100A1 compete for these binding sites on the TRPM3 N-terminus. Moreover, our results suggest that another very important TRP channel activity modulator, PtdIns(4,5)P2, interacts with the CaM/S100A1 binding sites on the TRPM3 N-terminus with high affinity.  相似文献   

9.
A family of plant ligand gated nonselective cation channels (cngcs) can be activated by direct, and reversible binding of cyclic nucleotide. These proteins have a cytoplasm-localized cyclic nucleotide binding domain (CNBD) at the carboxy-terminus of the polypeptide. A portion of the cngc CNBD also acts as a calmodulin (CaM) binding domain (CaMBD). The objective of this work is to further characterize interaction of cyclic nucleotide and CaM in gating plant cngc currents. The three-dimensional structure of an Arabidopsis thaliana cngc (Atcngc2) CNBD was modeled, indicating cAMP binding to the Atcngc2 CNBD in a pocket formed by a β barrel structure appressing a shortened (relative to animal cngc CNBDs) αC helix. The Atcngc2 CaMBD was expressed as a fusion peptide linking blue and green fluorescent proteins, and used to quantify CaM (A. thaliana CaM isoform 4) binding. CaM bound the fusion protein in a Ca2+–dependent manner with a Kd of 7.6 nM and a Ca2+ binding Kd of 200 nM. Functional characterization (voltage clamp analysis) of Atcngc2 was undertaken by expression in human embryonic kidney cells. CaM reversed cAMP activation of Atcngc2 currents. This functional interaction was dependent on free cytosolic Ca2+. Increasing cytosolic Ca2+ was found to inhibit cAMP activation of the channel in the absence of added CaM. We conclude that the physical interaction of Ca2+/CaM with plant cngcs blocks cyclic nucleotide activation of these channels. Thus, the cytosolic secondary messengers CaM, cAMP, and Ca2+ can act in an integrated fashion to gate currents through these plant ion channels.  相似文献   

10.
NSCaTE is a short linear motif of (xWxxx(I or L)xxxx), composed of residues with a high helix-forming propensity within a mostly disordered N-terminus that is conserved in L-type calcium channels from protostome invertebrates to humans. NSCaTE is an optional, lower affinity and calcium-sensitive binding site for calmodulin (CaM) which competes for CaM binding with a more ancient, C-terminal IQ domain on L-type channels. CaM bound to N- and C- terminal tails serve as dual detectors to changing intracellular Ca2+ concentrations, promoting calcium-dependent inactivation of L-type calcium channels. NSCaTE is absent in some arthropod species, and is also lacking in vertebrate L-type isoforms, Cav1.1 and Cav1.4 channels. The pervasiveness of a methionine just downstream from NSCaTE suggests that L-type channels could generate alternative N-termini lacking NSCaTE through the choice of translational start sites. Long N-terminus with an NSCaTE motif in L-type calcium channel homolog LCav1 from pond snail Lymnaea stagnalis has a faster calcium-dependent inactivation than a shortened N-termini lacking NSCaTE. NSCaTE effects are present in low concentrations of internal buffer (0.5 mM EGTA), but disappears in high buffer conditions (10 mM EGTA). Snail and mammalian NSCaTE have an alpha-helical propensity upon binding Ca2+-CaM and can saturate both CaM N-terminal and C-terminal domains in the absence of a competing IQ motif. NSCaTE evolved in ancestors of the first animals with internal organs for promoting a more rapid, calcium-sensitive inactivation of L-type channels.  相似文献   

11.
CEACAM1, a homotypic transmembrane receptor with 12 or 72 amino acid cytosolic domain isoforms, is converted from inactive cis-dimers to active trans-dimers by calcium-calmodulin (Ca2+/CaM). Previously, the weak binding of Ca2+/CaM to the human 12 AA cytosolic domain was studied using C-terminal anchored peptides. We now show the binding of 15N labeled Phe-454 cytosolic domain peptides in solution or membrane anchored using NMR demonstrates a significant role for the lipid bilayer. Although binding is increased by the mutation Phe454Ala, this mutation was previously shown to abrogate actin binding. On the other hand, Ca2+/CaM binding is abrogated by phosphorylation of nearby Thr-457, a post-translation modification required for actin binding and subsequent in vitro lumen formation. Binding of Ca2+/CaM to a membrane proximal peptide from the long 72 AA cytosolic domain anchored to lipid nanodiscs was very weak compared to lipid free conditions, suggesting membrane specific effects between the two isoforms. NMR analysis of 15N labeled Ca2+/CaM with unlabeled peptides showed the C-lobe of Ca2+/CaM is involved in peptide interactions, and hydrophobic residues such as Met-109, Val-142 and Met-144 play important roles in binding peptide. This information was incorporated into transmembrane models of CEACAM1 binding to Ca2+/CaM. The lack of Ca2+/CaM binding to phosphorylated Thr-457, a residue we have previously shown to be phosphorylated by CaMK2D, also dependent on Ca2+/CaM, suggests stepwise binding of the cytosolic domain first to Ca2+/CaM and then to actin.  相似文献   

12.
Ca2+ (calcium) homoeostasis and signalling rely on physical contacts between Ca2+ sensors in the ER (endoplasmic reticulum) and Ca2+ channels in the PM (plasma membrane). STIM1 (stromal interaction molecule 1) and STIM2 Ca2+ sensors oligomerize upon Ca2+ depletion in the ER lumen, contact phosphoinositides at the PM via their cytosolic lysine (K)-rich domains, and activate Ca2+ channels. Differential sensitivities of STIM1 and STIM2 towards ER luminal Ca2+ have been studied but responses towards elevated cytosolic Ca2+ concentration and the mechanism of lipid binding remain unclear. We found that tetramerization of the STIM1 K-rich domain is necessary for efficient binding to PI(4,5)P2-containing PM-like liposomes consistent with an oligomerization-driven STIM1 activation. In contrast, dimerization of STIM2 K-rich domain was sufficient for lipid binding. Furthermore, the K-rich domain of STIM2, but not of STIM1, forms an amphipathic α-helix. These distinct features of the STIM2 K-rich domain cause an increased affinity for PI(4,5)P2, consistent with the lower activation threshold of STIM2 and a function as regulator of basal Ca2+ levels. Concomitant with higher affinity for PM lipids, binding of CaM (calmodulin) inhibited the interaction of the STIM2 K-rich domain with liposomes in a Ca2+ and PI(4,5)P2 concentration-dependent manner. Therefore we suggest that elevated cytosolic Ca2+ concentration down-regulates STIM2-mediated ER–PM contacts via CaM binding.  相似文献   

13.
Oscillations in cytosolic free calcium determine the polarity of tip‐growing root hairs. The Ca2+ channel cyclic nucleotide gated channel 14 (CNGC14) contributes to the dynamic changes in Ca2+ concentration gradient at the root hair tip. However, the mechanisms that regulate CNGC14 are unknown. In this study, we detected a direct interaction between calmodulin 7 (CaM7) and CNGC14 through yeast two‐hybrid and bimolecular fluorescence complementation assays. We demonstrated that the third EF‐hand domain of CaM7 specifically interacts with the cytosolic C‐terminal domain of CNGC14. A two‐electrode voltage clamp assay showed that CaM7 completely inhibits CNGC14‐mediated Ca2+ influx, suggesting that CaM7 negatively regulates CNGC14‐mediated calcium signaling. Furthermore, CaM7 overexpressing lines phenocopy the short root hair phenotype of a cngc14 mutant and this phenotype is insensitive to changes in external Ca2+ concentrations. We, thus, identified CaM7‐CNGC14 as a novel interacting module that regulates polar growth in root hairs by controlling the tip‐focused Ca2+ signal.  相似文献   

14.
Abstract: Muscarinic receptor stimulation elicits a redistribution of calmodulin (CaM) from the membrane fraction to cytosol in the human neuroblastoma cell line SK-N-SH. Increasing the intracellular Ca2+ concentration with ionomycin also elevates cytosolic CaM. The aim of this study was to investigate the roles of extracellular and intracellular Ca2+ pools in the muscarinic receptor-mediated increases in cytosolic CaM in SK-N-SH cells. Stimulus-mediated changes in intracellular Ca2+ were monitored in fura-2-loaded cells, and CaM was measured by radioimmunoassay in the 100,000-g cytosol and membrane fractions. The influx of extracellular Ca2+ normally seen with carbachol treatment in SK-N-SH cells was eliminated by pretreatment with the nonspecific Ca2+ channel blocker Ni2+. Blocking the influx of extracellular Ca2+ had no effect on carbachol-mediated increases in cytosolic CaM (168 ± 18% of control values for carbachol treatment alone vs. 163 ± 28% for Ni2+ and carbachol) or decreases in membrane CaM. Similarly, removal of extracellular Ca2+ from the medium did not affect carbachol-mediated increases in cytosolic CaM (168 ± 26% of control). On the other hand, prevention of the carbachol-mediated increase of intracellular free Ca2+ by pretreatment with the cell-permeant Ca2+ chelator BAPTA/AM did attenuate the carbachol-mediated increase in cytosolic CaM (221 ± 37% of control without BAPTA/AM vs. 136 ± 13% with BAPTA/AM). The effect of direct entry of extracellular Ca2+ into the cell by K+ depolarization was assessed. Incubation of SK-N-SH cells with 60 mM K+ elicited an immediate and persistent increase in intracellular free Ca2+ concentration, but there was no corresponding alteration in CaM localization. On the contrary, in cells where intracellular Ca2+ was directly elevated by thapsigargin treatment, cytosolic CaM was elevated for at least 30 min while particulate CaM was decreased. In addition, treatment with ionomycin in the absence of extracellular Ca2+, which releases Ca2+ from intracellular stores, induced an increase in cytosolic CaM (203 ± 30% of control). The mechanism for the CaM release may involve activation of the α isozyme of protein kinase C, which was translocated from cytosol to membranes much more profoundly by thapsigargin than by K+ depolarization. These data demonstrate that release of Ca2+ from the intracellular store is important for the carbachol-mediated redistribution of CaM in human neuroblastoma SK-N-SH cells.  相似文献   

15.
Neurogranin (Ng) is a member of the IQ motif class of calmodulin (CaM)-binding proteins, and interactions with CaM are its only known biological function. In this report we demonstrate that the binding affinity of Ng for CaM is weakened by Ca2+ but to a lesser extent (2–3-fold) than that previously suggested from qualitative observations. We also show that Ng induced a >10-fold decrease in the affinity of Ca2+ binding to the C-terminal domain of CaM with an associated increase in the Ca2+ dissociation rate. We also discovered a modest, but potentially important, increase in the cooperativity in Ca2+ binding to the C-lobe of CaM in the presence of Ng, thus sharpening the threshold for the C-domain to become Ca2+-saturated. Domain mapping using synthetic peptides indicated that the IQ motif of Ng is a poor mimetic of the intact protein and that the acidic sequence just N-terminal to the IQ motif plays an important role in reproducing Ng-mediated decreases in the Ca2+ binding affinity of CaM. Using NMR, full-length Ng was shown to make contacts largely with residues in the C-domain of CaM, although contacts were also detected in residues in the N-terminal domain. Together, our results can be consolidated into a model where Ng contacts residues in the N- and C-lobes of both apo- and Ca2+-bound CaM and that although Ca2+ binding weakens Ng interactions with CaM, the most dramatic biochemical effect is the impact of Ng on Ca2+ binding to the C-terminal lobe of CaM.  相似文献   

16.
PEP-19 is a small, intrinsically disordered protein that binds to the C-domain of calmodulin (CaM) via an IQ motif and tunes its Ca2+ binding properties via an acidic sequence. We show here that the acidic sequence of PEP-19 has intrinsic Ca2+ binding activity, which may modulate Ca2+ binding to CaM by stabilizing an initial Ca2+-CaM complex or by electrostatically steering Ca2+ to and from CaM. Because PEP-19 is expressed in cells that exhibit highly active Ca2+ dynamics, we tested the hypothesis that it influences ligand-dependent Ca2+ release. We show that PEP-19 increases the sensitivity of HeLa cells to ATP-induced Ca2+ release to greatly increase the percentage of cells responding to sub-saturating doses of ATP and increases the frequency of Ca2+ oscillations. Mutations in the acidic sequence of PEP-19 that inhibit or prevent it from modulating Ca2+ binding to CaM greatly inhibit its effect on ATP-induced Ca2+ release. Thus, this cellular effect of PEP-19 does not depend simply on binding to CaM via the IQ motif but requires its acidic metal binding domain. Tuning the activities of Ca2+ mobilization pathways places PEP-19 at the top of CaM signaling cascades, with great potential to exert broad effects on downstream CaM targets, thus expanding the biological significance of this small regulator of CaM signaling.  相似文献   

17.
Ca2+ signalling in neurons through calmodulin (CaM) has a prominent function in regulating synaptic vesicle trafficking, transport, and fusion. Importantly, Ca2+–CaM binds a conserved region in the priming proteins Munc13‐1 and ubMunc13‐2 and thus regulates synaptic neurotransmitter release in neurons in response to residual Ca2+ signals. We solved the structure of Ca2+4–CaM in complex with the CaM‐binding domain of Munc13‐1, which features a novel 1‐5‐8‐26 CaM‐binding motif with two separated mobile structural modules, each involving a CaM domain. Photoaffinity labelling data reveal the same modular architecture in the complex with the ubMunc13‐2 isoform. The N‐module can be dissociated with EGTA to form the half‐loaded Munc13/Ca2+2–CaM complex. The Ca2+ regulation of these Munc13 isoforms can therefore be explained by the modular nature of the Munc13/Ca2+–CaM interactions, where the C‐module provides a high‐affinity interaction activated at nanomolar [Ca2+]i, whereas the N‐module acts as a sensor at micromolar [Ca2+]i. This Ca2+/CaM‐binding mode of Munc13 likely constitutes a key molecular correlate of the characteristic Ca2+‐dependent modulation of short‐term synaptic plasticity.  相似文献   

18.
Calmodulin (CaM), the primary receptor for intracellular Ca2+, regulates a large number of key enzymes and controls a wide spectrum of important biological responses. Olfactory cyclic nucleotide-gated ion channels (OLF channels) mediate olfactory transduction in olfactory receptor neurons. The opening of OLF leads to a rise in cytosolic concentration of Ca2+, upon binding to Ca2+, CaM disrupts the open conformation by binding to the CaM-binding domain in the N-terminal region and triggers the close mechanism. In order to unravel the regulatory role of CaM from structural point of view, NMR techniques were used to characterize the structure of CaM in association with the CaM binding domain of rat OLF channel (OLFp, 28 residues). Our data indicated that two distinct CaM/OLFp complexes existed simultaneously with stable structures that were not inter-exchangeable within the NMR time scale. Here, we report the full backbone and side chain resonance assignments of these two complexes of CaM/OLFp.  相似文献   

19.
OsCaM61 is one of five calmodulins known to be present in Oryza sativa that relays the increase of cytosolic [Ca2+] to downstream targets. OsCaM61 bears a unique C-terminal extension with a prenylation site. Using nuclear magnetic resonance (NMR) spectroscopy we studied the behavior of the calmodulin (CaM) domain and the C-terminal extension of OsCaM61 in the absence and presence of Ca2+. NMR dynamics data for OsCaM61 indicate that the two lobes of the CaM domain act together unlike the independent behavior of the lobes seen in mammalian CaM and soybean CaM4. Also, data demonstrate that the positively charged nuclear localization signal region in the tail in apo-OsCaM61 is helical, whereas it becomes flexible in the Ca2+-saturated protein. The extra helix in apo-OsCaM61 provides additional interactions in the C-lobe and increases the structural stability of the closed apo conformation. This leads to a decrease in the Ca2+ binding affinity of EF-hands III and IV in OsCaM61. In Ca2+-OsCaM61, the basic nuclear localization signal cluster adopts an extended conformation, exposing the C-terminal extension for prenylation or enabling OsCaM61 to be transferred to the nucleus. Moreover, Ser172 and Ala173, residues in the tail, interact with different regions of the protein. These interactions affect the ability of OsCaM61 to activate different target proteins. Altogether, our data show that the tail is not simply a linker between the prenyl group and the protein but that it also provides a new regulatory mechanism that some plants have developed to fine-tune Ca2+ signaling events.  相似文献   

20.
Jia  Wanying  Liu  Junyan  Yu  Zhiyi  Zhang  Xiaohong  Xu  Xiaoxue  Wang  Yuting  Gao  Qinghua  Feng  Rui  Wan  Yujun  Xu  Jianjun  Minobe  Etsuko  Kameyama  Masaki  Wang  Wuyang  Guo  Feng 《Neurochemical research》2021,46(3):523-534

Voltage-gated sodium channels (VGSCs) are fundamental to the initiation and propagation of action potentials in excitable cells. Ca2+/calmodulin (CaM) binds to VGSC type II (NaV1.2) isoleucine and glutamine (IQ) motif. An autism-associated mutation in NaV1.2 IQ motif, Arg1902Cys (R1902C), has been reported to affect the combination between CaM and the IQ motif compared to that of the wild type IQ motif. However, the detailed properties for the Ca2+-regulated binding of CaM to NaV1.2 IQ (1901Lys-1927Lys, IQwt) and mutant IQ motif (IQR1902C) remains unclear. Here, the binding ability of CaM and CaM's constituent proteins including N- and C lobe to the IQ motif of NaV1.2 and its mutant was investigated by protein pull-down experiments. We discovered that the combination between CaM and the IQ motif was U-shaped with the highest at [Ca2+] ≈ free and the lowest at 100 nM [Ca2+]. In the IQR1902C mutant, Ca2+-dependence of CaM binding was nearly lost. Consequently, the binding of CaM to IQR1902C at 100 and 500 nM [Ca2+] was increased compared to that of IQwt. Both N- and C lobe of CaM could bind with NaV1.2 IQ motif and IQR1902C mutant, with the major effect of C lobe. Furthermore, CaMKII had no impact on the binding between CaM and NaV1.2 IQ motif. This research offers novel insight to the regulation of NaV1.2 IQwt and IQR1902C motif, an autism-associated mutation, by CaM.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号