首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
Neurotensin (NT) stimulates the proliferation of prostate cancer PC3 cells, which express high levels of its G protein-coupled receptor NTS1. To shed light on mechanisms that might serve to coordinate mitogenic responses to metabolic status, we studied the effects of metabolic inhibitors on NTS1 function. We also related these effects to cellular ATP levels and to the activation of AMP-activated protein kinase (AMPK). Glycolytic and mitochondrial inhibitors, at concentrations that reduced cellular ATP levels, altered NT binding to the cells, inhibited NT-induced inositol phosphate formation, and inhibited NT-induced DNA synthesis. For eight of the nine inhibitors, the potencies to alter NT receptor function correlated to the potencies to decrease cellular ATP levels. In keeping with its known role to oppose metabolic stress, AMPK was activated by the metabolic inhibitors. Accordingly, the AMPK activator AICAR elevated cellular ATP levels and produced effects on NTS1 function that were opposite to those for the metabolic inhibitors. These results indicate that metabolic stress inhibited NTS1 function by a mechanism that involved a fall in cellular ATP levels and that was opposed by activation of AMPK. In a broader context, these findings are compatible with the idea that one means by which cells might coordinate mitogenic signaling to metabolic status could involve changes in growth factor receptor function.  相似文献   

2.
Maintenance of cellular homeostasis depends upon several pathways that allow a cell to respond and adapt to both environmental stress and changes in metabolic status. New work in this issue of The EMBO Journal reveals a mechanism of cross talk between heat shock factor 1 (HSF1), the primary regulator of the proteotoxic stress response, and AMP‐activated protein kinase (AMPK), the primary sensor in the metabolic stress response.  相似文献   

3.
All living organisms depend on dynamic mechanisms that repeatedly reassess the status of amassed energy, in order to adapt energy supply to demand. The AMP-activated protein kinase (AMPK) αβγ heterotrimer has emerged as an important integrator of signals managing energy balance. Control of AMPK activity involves allosteric AMP and ATP regulation, auto-inhibitory features and phosphorylation of its catalytic (α) and regulatory (β and γ) subunits. AMPK has a prominent role not only as a peripheral sensor but also in the central nervous system as a multifunctional metabolic regulator. AMPK represents an ideal second messenger for reporting cellular energy state. For this reason, activated AMPK acts as a protective response to energy stress in numerous systems. However, AMPK inhibition also actively participates in the control of whole body energy homeostasis. In this review, we discuss recent findings that support the role and function of AMPK inhibition under physiological and pathological states.  相似文献   

4.
The restoration of energy balance during ischemia is critical to cellular survival; however, relatively little is known concerning the regulation of neuronal metabolic pathways in response to central nervous system ischemia. AMP-activated protein kinase (AMPK), a master sensor of energy balance in peripheral tissues, is phosphorylated and activated when energy balance is low. We investigated whether AMPK might also modulate neuronal energy homeostasis during ischemia. We utilized two model systems of ischemia, middle cerebral artery occlusion in vivo and oxygen-glucose deprivation in vitro, to delineate changes in AMPK activity incurred from a metabolic stress. AMPK is highly expressed in cortical and hippocampal neurons under both normal and ischemic conditions. AMPK activity, as assessed by phosphorylation status, is increased following both middle cerebral artery occlusion and oxygen-glucose deprivation. Pharmacological inhibition of AMPK by either C75, a known modulator of neuronal ATP levels, or compound C reduced stroke damage. In contrast, activation of AMPK by 5-aminoimidazole-4-carboxamide ribonucleoside exacerbated damage. Mice deficient in neuronal nitric-oxide synthase demonstrated a decrease in both stroke damage and AMPK activation compared with wild type, suggesting a possible interaction between NO and AMPK activation in stroke. These data demonstrate a role for AMPK in the response of neurons during metabolic stress and suggest that in ischemia the activation of AMPK is deleterious. The ability to manipulate pharmacologically neuronal energy balance during ischemia represents an innovative approach to neuroprotection.  相似文献   

5.
腺苷酸活化蛋白激酶(AMPactivated proteinkinase,AMPK)是真核细胞中高度保守的丝氨酸/苏氨酸蛋白激酶,以异源三聚体的形式广泛存在于真核生物体内,是细胞的能量感受器,在能量代谢调控中起极其重要的作用。肝激酶B1(LKB1)、Ca2+/CaM-依赖蛋白激酶激酶β(CaMKKβ)、AMP/ATP或ADP/ATP比值升高以及诸如运动肌肉收缩等生理刺激均可以激活AMPK,进而调节细胞的能量代谢网络,提高其应对内外环境变化的能力,从而维持细胞水平乃至整个机体的稳定状态。活化的AMPK可以增强分解代谢,抑制合成代谢,上调ATP水平,参与细胞糖代谢、脂肪代谢、蛋白质代谢等能量代谢过程,增加细胞能量储备,应对能量缺乏。同时活化的AMPK参与细胞的生长、增殖、凋亡、自噬等基本生物学过程。AMPK是研究肥胖,糖尿病等能量代谢性疾病的核心。肿瘤细胞存在特殊的能量代谢方式,其发生,生长,转移与能量代谢失衡密切相关。AMPK与肿瘤细胞异常的能量代谢相关,为肿瘤发生、发展机制研究提供新的策略。本文主要探讨AMPK的结构、激活机制、参与的物质能量代谢和细胞的基本生物学过程以及与肿瘤发生的关联。  相似文献   

6.
AMPK:细胞能量中枢   总被引:1,自引:0,他引:1  
腺苷酸活化蛋白激酶(AMP activated protein kinase,AMPK)是真核细胞中高度保守的丝氨酸/苏氨酸蛋白激酶,以异源三聚体的形式广泛存在于真核生物体内,是细胞的能量感受器,在能量代谢调控中起极其重要的作用。肝激酶B1(LKB1)、Ca^2+/CaM-依赖蛋白激酶激酶β(CaMKKβ)、AMP/ATP或ADP/ATP比值升高以及诸如运动肌肉收缩等生理刺激均可以激活AMPK,进而调节细胞的能量代谢网络,提高其应对内外环境变化的能力,从而维持细胞水平乃至整个机体的稳定状态。活化的AMPK可以增强分解代谢,抑制合成代谢,上调ATP水平,参与细胞糖代谢、脂肪代谢、蛋白质代谢等能量代谢过程,增加细胞能量储备,应对能量缺乏。同时活化的AMPK参与细胞的生长、增殖、凋亡、自噬等基本生物学过程。AMPK是研究肥胖,糖尿病等能量代谢性疾病的核心。肿瘤细胞存在特殊的能量代谢方式,其发生,生长,转移与能量代谢失衡密切相关。AMPK与肿瘤细胞异常的能量代谢相关,为肿瘤发生、发展机制研究提供新的策略。本文主要探讨AMPK的结构、激活机制、参与的物质能量代谢和细胞的基本生物学过程以及与肿瘤发生的关联。  相似文献   

7.
AMPK phosphorylation of raptor mediates a metabolic checkpoint   总被引:4,自引:0,他引:4  
AMPK is a highly conserved sensor of cellular energy status that is activated under conditions of low intracellular ATP. AMPK responds to energy stress by suppressing cell growth and biosynthetic processes, in part through its inhibition of the rapamycin-sensitive mTOR (mTORC1) pathway. AMPK phosphorylation of the TSC2 tumor suppressor contributes to suppression of mTORC1; however, TSC2-deficient cells remain responsive to energy stress. Using a proteomic and bioinformatics approach, we sought to identify additional substrates of AMPK that mediate its effects on growth control. We report here that AMPK directly phosphorylates the mTOR binding partner raptor on two well-conserved serine residues, and this phosphorylation induces 14-3-3 binding to raptor. The phosphorylation of raptor by AMPK is required for the inhibition of mTORC1 and cell-cycle arrest induced by energy stress. These findings uncover a conserved effector of AMPK that mediates its role as a metabolic checkpoint coordinating cell growth with energy status.  相似文献   

8.
AMP-activated protein kinase (AMPK) serves as an energy-sensing protein kinase that is activated by a variety of metabolic stresses that lower cellular energy levels. When activated, AMPK modulates a network of metabolic pathways that result in net increased substrate oxidation, generation of reduced nucleotide cofactors, and production of ATP. AMPK is activated by a high AMP:ATP ratio and phosphorylation on threonine 172 by an upstream kinase. Recent studies suggest that mechanisms that do not involve changes in adenine nucleotide levels can activate AMPK. Another sensor of the metabolic state of the cell is the NAD/NADH redox potential. To test whether the redox state might have an effect on AMPK activity, we examined the effect of beta-NAD and NADH on this enzyme. The recombinant T172D-AMPK, which was mutated to mimic the phosphorylated state, was activated by beta-NAD in a dose-dependent manner, whereas NADH inhibited its activity. We explored the effect of NADH on AMPK by systematically varying the concentrations of ATP, NADH, peptide substrate, and AMP. Based on our findings and established activation of AMPK by AMP, we proposed a model for the regulation by NADH. Key features of this model are as follows. (a) NADH has an apparent competitive behavior with respect to ATP and uncompetitive behavior with respect to AMP resulting in improved binding constant in the presence of AMP, and (b) the binding of the peptide is not significantly altered by NADH. In the absence of AMP, the binding constant of NADH becomes higher than physiologically relevant. We conclude that AMPK senses both components of cellular energy status, redox potential, and phosphorylation potential.  相似文献   

9.
Structural insight into AMPK regulation: ADP comes into play   总被引:1,自引:0,他引:1  
The AMP-activated protein kinase (AMPK), a sensor of cellular energy status found in all eukaryotes, responds to changes in intracellular adenosine nucleotide levels resulting from metabolic stresses. Here we describe crystal structures of a heterotrimeric regulatory core fragment from Schizosaccharomyces pombe AMPK in complex with ADP, ADP/AMP, ADP/ATP, and 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranotide (AICAR phosphate, or ZMP), a well-characterized AMPK activator. Prior crystallographic studies had revealed a single site in the gamma subunit that binds either ATP or AMP within Bateman domain B. Here we show that ZMP binds at this site, mimicking the binding of AMP. An analogous site in Bateman domain A selectively accommodates ADP, which binds in a distinct manner that also involves direct ligation to elements from the beta subunit. These observations suggest a possible role for ADP in regulating AMPK response to changes in cellular energy status.  相似文献   

10.
AMP‐activated protein kinase (AMPK) is an evolutionarily conserved cellular switch that activates catabolic pathways and turns off anabolic processes. In this way, AMPK activation can restore the perturbation of cellular energy levels. In physiological situations, AMPK senses energy deficiency (in the form of an increased AMP/ATP ratio), but it is also activated by metabolic insults, such as glucose or oxygen deprivation. Metformin, one of the most widely prescribed anti‐diabetic drugs, exerts its actions by AMPK activation. However, while the functions of AMPK as a metabolic regulator are fairly well understood, its actions in neuronal cells only recently gained attention. This review will discuss newly emerged functions of AMPK in neuroprotection and neurodegeneration. Additionally, recent views on the role of AMPK in autophagy, an important catabolic process that is also involved in neurodegeneration and cancer, will be highlighted.  相似文献   

11.
Cells cope with environmental changes through various mechanisms. Pathways involving HIF-1, SIRT1, and AMPK play major roles in energy homeostasis under stress conditions. Diacylglycerol kinase (DGK) constitutes an enzyme family that catalyzes conversion of diacylglycerol to phosphatidic acid. We reported earlier that energy depletion such as ischemia induces proteasomal degradation of DGKζ before cell death, suggesting involvement of DGKζ in energy homeostasis. This study examines how DGKζ depletion affects the regulation of HIF-1α, SIRT1, and AMPKα. Under hypoxia DGKζ depletion attenuates HIF-1α induction and SIRT1 expression, which might render cells vulnerable to energy stress. However, DGKζ depletion engenders enhanced AMPKα phosphorylation by upstream kinase TAK1 and an increase in intracellular ATP levels. Results suggest that DGKζ exerts a suppressive effect on TAK1 activity in the AMPK activation mechanism, and that DGKζ depletion might engender dysregulation of the AMPK-mediated energy sensor system.  相似文献   

12.
The IGF/mTOR pathway, which is modulated by nutrients, growth factors, energy status and cellular stress regulates aging in various organisms. SIRT1 is a NAD+ dependent deacetylase that is known to regulate caloric restriction mediated longevity in model organisms, and has also been linked to the insulin/IGF signaling pathway. Here we investigated the potential regulation of mTOR signaling by SIRT1 in response to nutrients and cellular stress. We demonstrate that SIRT1 deficiency results in elevated mTOR signaling, which is not abolished by stress conditions. The SIRT1 activator resveratrol reduces, whereas SIRT1 inhibitor nicotinamide enhances mTOR activity in a SIRT1 dependent manner. Furthermore, we demonstrate that SIRT1 interacts with TSC2, a component of the mTOR inhibitory-complex upstream to mTORC1, and regulates mTOR signaling in a TSC2 dependent manner. These results demonstrate that SIRT1 negatively regulates mTOR signaling potentially through the TSC1/2 complex.  相似文献   

13.
AMP-activated protein kinase (AMPK) is a cellular energy sensor activated by metabolic stresses that either inhibit ATP synthesis or accelerate ATP consumption. Activation of AMPK in response to an increase in the cellular AMP:ATP ratio results in inhibition of ATP-consuming processes such as gluconeogenesis and fatty acid synthesis, while stimulating ATP-generating processes, including fatty acid oxidation. These alterations in lipid and glucose metabolism would be expected to ameliorate the pathogenesis of obesity, type 2 diabetes and other metabolic disorders. Recently, AMPK has also been identified as a potential target for cancer prevention and/or treatment. Cell growth and proliferation are energetically demanding, and AMPK may act as an “energy checkpoint” that permits growth and proliferation only when energy reserves are sufficient. Thus, activators of AMPK could have potential as novel therapeutics both for metabolic disorders and for cancer, which together constitute two of the most prevalent groups of diseases worldwide.  相似文献   

14.
AMPK: a nutrient and energy sensor that maintains energy homeostasis   总被引:2,自引:0,他引:2  
AMP-activated protein kinase (AMPK) is a crucial cellular energy sensor. Once activated by falling energy status, it promotes ATP production by increasing the activity or expression of proteins involved in catabolism while conserving ATP by switching off biosynthetic pathways. AMPK also regulates metabolic energy balance at the whole-body level. For example, it mediates the effects of agents acting on the hypothalamus that promote feeding and entrains circadian rhythms of metabolism and feeding behaviour. Finally, recent studies reveal that AMPK conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability.  相似文献   

15.
Adenosine monophosphate-activated protein kinase (AMPK), silent mating type information regulation 2 homologue 1 (SIRT 1), and peroxisome proliferator-activated receptor γ co-activator α (PGC1α) constitute an energy sensing cellular network that controls mitochondrial biogenesis. Caloric restriction activates both AMPK and SIRT-1 to increase ATP production from fat oxidation. We characterized AMPK and SIRT 1 expression and activity in human skeletal muscle in response to dietary fat or carbohydrate intake on the background of either overfeeding or caloric restriction. AMPK phosphorylation and acetylation of PGC1α (as a measure of SIRT activity) were determined. Euglycemic-hyperinsulinemic clamp and muscle biopsies were performed in human subjects participating in 2 separate studies. In study 1, 21 lean healthy individuals were overfed for 5 days, while in study 2, 18 obese otherwise healthy individuals consumed a calorie-restricted diet for 5 days. Under both conditions - overfeeding and caloric restriction - high fat/low carbohydrate (HF/LC) diet significantly increased phosphorylation of AMPK and deacetylation of PGC1α in skeletal muscle without affecting total amounts of AMPK, PGC1α, or SIRT 1. In contrast, low fat/high carbohydrate (LF/HC) hypocaloric diet reduced phosphorylation of AMPK and deacetylation of PGC1α. Our data indicate that a relative deficiency in carbohydrate intake or, albeit less likely, a relative excess of fat intake even in the absence of caloric deprivation is sufficient to activate the AMPK-SIRT 1-PGC1α energy-sensing cellular network in human skeletal muscle.  相似文献   

16.
AMP-activated kinase (AMPK) is a highly conserved heterotrimeric kinase that functions as a metabolic master switch to coordinate cellular enzymes involved in carbohydrate and fat metabolism that regulate ATP conservation and synthesis. AMPK is activated by conditions that increase AMP-to-ATP ratio, such as exercise and metabolic stress. In the present study, we probed whether AMPK was expressed in vascular smooth muscle and would be activated by metabolic stress. Endothelium-denuded porcine carotid artery segments were metabolically challenged with 2-deoxyglucose (10 mM) plus N(2) (N(2)-2DG). These vessels exhibited a rapid increase in AMPK activity by 1 min that was near maximal by 20 min. AMPK inactivation on return to normal physiological saline was approximately 50% in 1 min and fully recovered by 5 min. Immunoprecipitation of the alpha(1)- and alpha(2)-catalytic subunit followed by immunoblot analysis for [P]Thr(172)-AMPK indicates that alpha(1)-AMPK accounts for all activity. Little if any alpha(2)-AMPK was detected in carotid smooth muscle. AMPK activity was not increased by contractile agonist (endothelin-1) or by the reported AMPK activators 5-aminoimidazole-4-carboxamide ribofuranoside (2 mM), metformin (2 mM), or phenformin (0.2 mM). AMPK activation by N(2)-2DG was associated with a rapid and pronounced reduction in endothelin-induced force and reduced phosphorylation of Akt and Erk 1/2. These data demonstrate that AMPK expression differs in vascular smooth muscle compared with striated muscles and that activation and inactivation after metabolic stress occur rapidly and are associated with signaling pathways that may regulate smooth-muscle contraction.  相似文献   

17.
AMP-activated protein kinase (AMPK) is the central component of a protein kinase cascade that acts as an energy sensor maintaining the energy balance at the cellular as well as at the whole body level. Within the healthy cell, metabolic stress leading to an increase in AMP concentration results in AMPK activation. Once activated, AMPK "switches off" many anabolic pathways e.g. fatty acid and protein synthesis while "switches on" catabolic pathways such as fatty acid oxidation or glycolysis which serve to restore intracellular ATP level. Adipocyte derived hormones leptin and adiponectin activate AMPK in peripheral tissues increasing energy expenditure. AMPK also regulates food intake due to response to hormonal and nutrient signals in hypothalamus. Antidiabetic drugs that mimic the action of insulin activate the AMPK signaling pathways. Further studies are needed to clarify the importance of the AMPK activation for therapeutic effects of this drugs.  相似文献   

18.
The role of PAS kinase in regulating energy metabolism   总被引:1,自引:0,他引:1  
Hao HX  Rutter J 《IUBMB life》2008,60(4):204-209
  相似文献   

19.
Adipose tissue plays an important role in storing excess nutrients and preventing ectopic lipid accumulation in other organs. Obesity leads to excess lipid storage in adipocytes, resulting in the generation of stress signals and the derangement of metabolic functions. SIRT1 is an important regulatory sensor of nutrient availability in many metabolic tissues. Here we report that SIRT1 functions in adipose tissue to protect from inflammation and obesity under normal feeding conditions, and to forestall the progression to metabolic dysfunction under dietary stress and aging. Genetic ablation of SIRT1 in adipose tissue leads to gene expression changes that highly overlap with changes induced by high-fat diet in wild-type mice, suggesting that dietary stress signals inhibit the activity of SIRT1. Indeed, we show that high-fat diet induces the cleavage of SIRT1 protein in adipose tissue by the inflammation-activated caspase-1, providing a link between dietary stress and predisposition to metabolic dysfunction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号