首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 361 毫秒
1.
Neural crest cells (NCCs) are a remarkable, dynamic group of cells that travel long distances in the embryo to reach their target sites. They are responsible for the formation of craniofacial bones and cartilage, neurons and glia in the peripheral nervous system and pigment cells. Live imaging of NCCs as they traverse the embryo has been critical to increasing our knowledge of their biology. NCCs exhibit multiple behaviors and communicate with each other and their environment along each step of their journey. Imaging combined with molecular manipulations has led to insights into the mechanisms controlling these behaviors. In this Review, we highlight studies that have used live imaging to provide novel insight into NCC migration and discuss how continued use of such techniques can advance our understanding of NCC biology.Key words: live imaging, neural crest, EMT, Rho GTPase, ephrin, PCP signaling, cadherin, VEGFNeural crest cells (NCCs) are a pluripotent population of cells that migrate from the dorsal neuroepithelium and give rise to multiple cell types including neurons and glia of the peripheral nervous system, pigment cells and craniofacial bone and cartilage.1 An important hallmark of NCCs is their remarkable ability to migrate over long distances and along specific pathways through the embryo. NCC migration begins with an epithelial to mesenchymal transition (EMT), in which NCCs lose adhesions with their neighbors and segregate from the neuroepithelium.2,3 Following EMT, NCCs acquire a polarized morphology and initiate directed migration away from the neural tube. While migrating along their pathways to their target tissues, NCCs are guided by extensive communication with one another and by other cues from the extracellular environment. Each of these aspects of NCC migration requires precise regulation of cell motile behaviors, although the mechanisms controlling them are still not well understood. A critical step toward understanding the molecular control of NCC motility is characterization of NCC behaviors as they migrate in their native environment. In the past 15 years, multiple studies have analyzed specific behaviors associated with NCCs along the various stages of their journey and have begun to identify molecules controlling these behaviors. In this review we will focus specifically on these studies that employ live imaging and will highlight the strength of live imaging to reveal mechanisms regulating NCC motility and migration pathways.  相似文献   

2.
Neural crest cell (NCC) invasion is a complex sculpting of individual cells into organized migratory streams that lead to organ development along the vertebrate axis. Key to our understanding of how molecular mechanisms modulate the NCC migratory pattern is information about cell behaviors, yet it has been challenging to selectively mark and analyze migratory NCCs in a living embryo. Here, we apply an innovative in vivo strategy to investigate chick NCC behaviors within the rhombomere 4 (r4) migratory stream by combining photoactivation of KikGR and confocal time-lapse analysis of H2B-mRFP1 transfected NCCs. We find that the spatial order of r4 NCC emergence translates into a distal-to-proximal invasion of the 2nd branchial arch. Lead and trailing NCCs display similar average cell speeds and directionalities. Surprisingly, we find that lead NCCs proliferate along the migratory route and grow to outnumber trailing NCCs by nearly 3 to 1. A simple, cell-based computational model reproduces the r4 NCC migratory pattern and predicts the invasion order can be disrupted by slower, less directional lead cells or by environmental noise. Our results suggest a model in which NCC behaviors maintain a spatially-ordered invasion of the branchial arches with differences in cell proliferation between the migratory front and trailing NCCs.  相似文献   

3.
4.
In the beginning     
Neural crest cells (NCCs) are migratory cells that delaminate from the neural tube early in development and then disseminate throughout the embryo to give rise to a wide variety of cell types that are key to the vertebrate body plan. During their journey from the neural tube to their peripheral targets, NCCs progressively differentiate, raising the question when the fate of an individual NCC is sealed. One hypothesis suggests that the fate of a NCC is specified by target-derived signals emanating from the environment they migrate through, while another hypothesis proposes that NCCs are already specified to differentiate along select lineages at the time they are born in the neural tube, with environmental signals helping them to realize their prespecified fate potential. Alternatively, both mechanisms may cooperate to drive NCC diversity. This review highlights recent advances in our understanding of prespecification during trunk NCC development.  相似文献   

5.
Neural crest cells (NCCs) are migratory cells that delaminate from the neural tube early in development and then disseminate throughout the embryo to give rise to a wide variety of cell types that are key to the vertebrate body plan. During their journey from the neural tube to their peripheral targets, NCCs progressively differentiate, raising the question of when the fate of an individual NCC is sealed. One hypothesis suggests that the fate of a NCC is specified by target-derived signals emanating from the environment they migrate through, while another hypothesis proposes that NCCs are already specified to differentiate along select lineages at the time they are born in the neural tube, with environmental signals helping them to realize their prespecified fate potential. Alternatively, both mechanisms may cooperate to drive NCC diversity. This review highlights recent advances in our understanding of prespecification during trunk NCC development.Key words: neural crest cell, multipotent, prespecification, neuropilin, semaphorin, migration, cell fate  相似文献   

6.
The neural crest, the intriguing cell population that gives rise to a panoply of derivatives in the vertebrate embryo, including the mesenchymal structures in the head, melanocytes and most of the peripheral nervous system, still proves to be an important yet enigmatic developmental cell population to study with applications in stem cell biology, cancer biology and clinical medicine. Albeit our knowledge base is rich due to a strong history of experimentation, the fact that we have yet to decipher so many key aspects of neural crest cell (NCC) behavior speaks to the challenging complexity of this transient yet vital cell population. With the advent of new fluorescent tracing techniques, we have reexamined the migratory behaviors and ultimate fate of ventrally migrating avian NCCs within a late wave of emigration and identified a subpopulation of lineally restricted NCCs who migrate to the contralateral dorsal root ganglia (DRG) and therein give rise to mitotically active progenitor cells that ultimately produce the majority of the nociceptive sensory neurons in the DRG. These data provide evidence for the fate prespecification of subsets of NCCs while still resident in the neural tube.  相似文献   

7.
8.
Eph receptors and their ligands ephrins have been implicated in guiding the directed migration of neural crest cells (NCCs). In this study, we found that Wnt1-Cre-mediated expression of ephrinA5-Fc along the dorsal midline of the dien- and mesencephalon resulted in severe craniofacial malformation of mouse embryo. Interestingly, expression of cephalic NCC markers decreased significantly in the frontonasal process and branchial arches 1 and 2, which are target areas for the migratory cephalic NCCs originating in the dien- and mesencephalon. In addition, these craniofacial tissues were much smaller in mutant embryos expressing ephrinA5-Fc. Importantly, EphA7-positive cephalic NCCs were absent along the dorsal dien- and mesencephalon of mutant embryos expressing ephrinA5-Fc, suggesting that the generation of cephalic NCCs is disrupted due to ephrinA5-Fc expression. NCC explant experiments suggested that ephrinA5-Fc perturbed survival of cephalic NCC precursors in the dorsal midline tissue rather than affecting their migratory capacity, which was consistent with our previous report that expression of ephrinA5-Fc in the dorsal midline is responsible for severe neuroepithelial cell apoptotic death. Taken together, our findings strongly suggest that expression of ephrinA5-Fc decreases a population of cephalic NCC precursors in the dorsal midline of the dien- and mesencephalon, thereby disrupting craniofacial development in the mouse embryos.  相似文献   

9.
The neural crest is an excellent model to study embryonic cell migration, since cell behaviors can be studied in vivo with advanced optical imaging and molecular intervention. What is unclear is how molecular signals direct neural crest cell (NCC) migration through multiple microenvironments and into specific targets. Here, we tested the hypothesis that the invasion of cranial NCCs, specifically the rhombomere 4 (r4) migratory stream into branchial arch 2 (ba2), is due to chemoattraction through neuropilin-1-vascular endothelial growth factor (VEGF) interactions. We found that the spatio-temporal expression pattern of VEGF in the ectoderm correlated with the NCC migratory front. RT-PCR analysis of the r4 migratory stream showed that ba2 tissue expressed VEGF and r4 NCCs expressed VEGF receptor 2. When soluble VEGF receptor 1 (sVEGFR1) was injected distal to the r4 migratory front, to bind up endogenous VEGF, NCCs failed to completely invade ba2. Time-lapse imaging revealed that cranial NCCs were attracted to ba2 tissue or VEGF sources in vitro. VEGF-soaked beads or VEGF-expressing cells placed adjacent to the r4 migratory stream caused NCCs to divert from stereotypical pathways and move towards an ectopic VEGF source. Our results suggest a model in which NCC entry and invasion of ba2 is dependent on chemoattractive signaling through neuropilin-1-VEGF interactions.  相似文献   

10.
Non-cell-autonomous effects of Ret deletion in early enteric neurogenesis   总被引:1,自引:0,他引:1  
Neural crest cells (NCCs) form at the dorsal margin of the neural tube and migrate along distinct pathways throughout the vertebrate embryo to generate multiple cell types. A subpopulation of vagal NCCs invades the foregut and colonises the entire gastrointestinal tract to form the enteric nervous system (ENS). The colonisation of embryonic gut by NCCs has been studied extensively in chick embryos, and genetic studies in mice have identified genes crucial for ENS development, including Ret. Here, we have combined mouse embryo and organotypic gut culture to monitor and experimentally manipulate the progenitors of the ENS. Using this system, we demonstrate that lineally marked intestinal ENS progenitors from E11.5 mouse embryos grafted into the early vagal NCC pathway of E8.5 embryos colonise the entire length of the gastrointestinal tract. By contrast, similar progenitors transplanted into Ret-deficient host embryos are restricted to the proximal foregut. Our findings establish an experimental system that can be used to explore the interactions of NCCs with their cellular environment and reveal a previously unrecognised non-cell-autonomous effect of Ret deletion on ENS development.  相似文献   

11.
蒋卓远  查艳  石小峰  张永彪 《遗传》2022,(2):117-134
神经嵴细胞(neural crest cells,NCCs)是一类脊椎动物特有的可迁移的多能干细胞,其可分化为软骨细胞、神经元和黑色素细胞等多种类型细胞。NCCs的形成、迁移和分化受到严格调控,任何扰乱NCCs发育的因素都可导致胚胎发育畸形。由神经嵴细胞发育异常所导致的一系列疾病统称为神经嵴病(neurocristopathies,NCPs)。NCPs种类繁多且表型复杂,可累及人体多个部位(颅面部、心脏、肠胃和皮肤等),严重危害患者的身体机能和心理健康。NCPs占所有出生缺陷患儿的1/3,遗传因素是导致NCPs的主要风险因素,但环境风险因子以及基因–环境交互作用异常也可导致NCPs。本文对神经嵴细胞和神经嵴病及其致病机制进行综述,为系统认知神经嵴细胞发育以及神经嵴病提供参考,为了解神经嵴病的病因以及开展有效防控提供科学支撑。  相似文献   

12.
Chemokine-mediated migration of mesencephalic neural crest cells   总被引:1,自引:0,他引:1  
Clefts of the lip and/or palate are among the most prevalent birth defects affecting approximately 7000 newborns in the United States annually. Disruption of the developmentally programmed migration of neural crest cells (NCCs) into the orofacial region is thought to be one of the major causes of orofacial clefting. Signaling of the chemokine SDF-1 (Stromal Derived Factor-1) through its specific receptor, CXCR4, is required for the migration of many stem cell and progenitor cell populations from their respective sites of emergence to the regions where they differentiate into complex cell types, tissues and organs. In the present study, "transwell" assays of chick embryo mesencephalic (cranial) NCC migration and ex ovo whole embryo "bead implantation" assays were utilized to determine whether SDF-1/CXCR4 signaling mediates mesencephalic NCC migration. Results from this study demonstrate that attenuation of SDF-1 signaling, through the use of specific CXCR4 antagonists (AMD3100 and TN14003), disrupts the migration of mesencephalic NCCs into the orofacial region, suggesting a novel role for SDF-1/CXCR4 signaling in the directed migration of mesencephalic NCCs in the early stage embryo.  相似文献   

13.
Neural crest cells (NCCs) are a multipotent embryonic cell population that contributes to the formation of various craniofacial structures including teeth. It has been generally believed that dental enamel is an ectodermal derivative, whereas the dentin–pulp complex and the surrounding supporting tissues originate from NCC-derived mesenchyme. These traditional concepts stem mainly from several early studies of fishes and amphibians. Recently, Wnt1-Cre/R26R mice, a mouse model for NCC lineage analysis, revealed the contribution of NCCs to mammalian tooth development. However, the discrepancy of expression patterns between different NCC-specific transgenic mouse lines makes it compulsory to revisit the cell lineage in mammalian tooth development. Here, we reevaluated the NCC lineage during mouse tooth development by using P0-Cre/R26R mice, another NCC-specific transgenic mouse line. Inconsistent with the traditional concepts, we observed the potential contribution of NCCs to developing enamel organ and enamel formation. We also demonstrated that the P0-Cre transgene was specifically expressed in migrating NCC in the hindbrain region, where NCC contributes to tooth, validating their applicability for NCC lineage analysis. Our unanticipated finding may change the general understanding of tooth development and provide new insights into dental stem cell biology.  相似文献   

14.
The cardiac neural crest, a subpopulation of the neural crest, contributes to the cardiac outflow tract formation during development. However, how it follows the defined long-range migratory pathway remains unclear. We show here that the migrating cardiac neural crest cells (NCCs) express Plexin-A2, Plexin-D1 and Neuropilin. The membrane-bound ligands for Plexin-A2, Semaphorin (Sema)6A and Sema6B, are expressed in the dorsal neural tube and the lateral pharyngeal arch mesenchyme (the NCC “routes”). Sema3C, a ligand for Plexin-D1/neuropilin-1, is expressed in the cardiac outflow tract (the NCC “target”). Sema6A and Sema6B repel neural crest cells, while Sema3C attracts neural crest cells. Sema6A and Sema6B repulsion and Sema3C attraction are diminished either when Plexin-A2 and Neuropilin-1, or when Plexin-D1, respectively, are knocked down in NCCs. When RNAi knockdown diminishes each receptor in NCCs, the NCCs fail to migrate into the cardiac outflow tract in the developing chick embryo. Furthermore, Plexin-A2-deficient mice exhibit defects of cardiac outflow tract formation. We therefore conclude that the coordination of repulsive cues provided by Sema6A/Sema6B through Plexin-A2 paired with the attractive cue by Sema3C through Plexin-D1 is required for the precise navigation of migrating cardiac NCCs.  相似文献   

15.
Neural crest cells (NCCs) are essential components of the sympathetic nervous system, skin, craniofacial skeleton, and aortic arch. It has been known for many years that perturbation of migration, proliferation, and/or differentiation of these cells leads to birth defects such as cleft palate and persistent truncus arteriosus (PTA). Previously, we had shown that disruption of the platelet-derived growth factor receptor (PDGFR) alpha in NCCs resulted in defects in craniofacial and aortic arch development, the latter with variable penetrance. Because we observed ventricular septal defects in embryos that are null for the PDGFRbeta, we hypothesized that both PDGF receptors are involved in NCC formation. Here, we show that both receptors are expressed in cardiac NCCs and that the combined loss of the PDGFRalpha and PDGFRbeta in NCCs resulted in NCC-related heart abnormalities, including PTA and a ventricular septal defect (VSD). Using NCC lineage tracing, we observed that loss of PDGF receptor signaling resulted in reduced NCCs in the conotruncus region, leading to defects in aortic arch septation. These results indicate that while PDGFRalpha plays a predominant role in NCC development, the PDGFRbeta is expressed by and functions in cardiac NCCs. Combined PDGF receptor signaling is required for sufficient recruitment of cardiac NCCs into the conotruncal region and for formation of the aortico-pulmonary and ventricular septum.  相似文献   

16.
Neural crest cells (NCCs) are physically responsible for craniofacial skeleton formation, pharyngeal arch artery remodeling and cardiac outflow tract septation during vertebrate development. Cdc42 (cell division cycle 42) is a Rho family small GTP-binding protein that works as a molecular switch to regulate cytoskeleton remodeling and the establishment of cell polarity. To investigate the role of Cdc42 in NCCs during embryonic development, we deleted Cdc42 in NCCs by crossing Cdc42 flox mice with Wnt1-cre mice. We found that the inactivation of Cdc42 in NCCs caused embryonic lethality with craniofacial deformities and cardiovascular developmental defects. Specifically, Cdc42 NCC knockout embryos showed fully penetrant cleft lips and short snouts. Alcian Blue and Alizarin Red staining of the cranium exhibited an unfused nasal capsule and palatine in the mutant embryos. India ink intracardiac injection analysis displayed a spectrum of cardiovascular developmental defects, including persistent truncus arteriosus, hypomorphic pulmonary arteries, interrupted aortic arches, and right-sided aortic arches. To explore the underlying mechanisms of Cdc42 in the formation of the great blood vessels, we generated Wnt1Cre-Cdc42-Rosa26 reporter mice. By beta-galactosidase staining, a subpopulation of Cdc42-null NCCs was observed halting in their migration midway from the pharyngeal arches to the conotruncal cushions. Phalloidin staining revealed dispersed, shorter and disoriented stress fibers in Cdc42-null NCCs. Finally, we demonstrated that the inactivation of Cdc42 in NCCs impaired bone morphogenetic protein 2 (BMP2)-induced NCC cytoskeleton remodeling and migration. In summary, our results demonstrate that Cdc42 plays an essential role in NCC migration, and inactivation of Cdc42 in NCCs impairs craniofacial and cardiovascular development in mice.  相似文献   

17.
Neural crest cells (NCCs) are a transient population of cells present in vertebrate development that emigrate from the dorsal neural tube (NT) after undergoing an epithelial-mesenchymal transition 1,2. Following EMT, NCCs migrate large distances along stereotypic pathways until they reach their targets. NCCs differentiate into a vast array of cell types including neurons, glia, melanocytes, and chromaffin cells 1-3. The ability of NCCs to reach and recognize their proper target locations is foundational for the appropriate formation of all structures containing trunk NCC-derived components 3. Elucidating the mechanisms of guidance for trunk NCC migration has therefore been a matter of great significance. Numerous molecules have been demonstrated to guide NCC migration 4. For instance, trunk NCCs are known to be repelled by negative guidance cues such as Semaphorin, Ephrin, and Slit ligands 5-8. However, not until recently have any chemoattractants of trunk NCCs been identified 9. Conventional in vitro approaches to studying the chemotactic behavior of adherent cells work best with immortalized, homogenously distributed cells, but are more challenging to apply to certain primary stem cell cultures that initially lack a homogenous distribution and rapidly differentiate (such as NCCs). One approach to homogenize the distribution of trunk NCCs for chemotaxis studies is to isolate trunk NCCs from primary NT explant cultures, then lift and replate them to be almost 100% confluent. However, this plating approach requires substantial amounts of time and effort to explant enough cells, is harsh, and distributes trunk NCCs in a dissimilar manner to that found in in vivo conditions. Here, we report an in vitro approach that is able to evaluate chemotaxis and other migratory responses of trunk NCCs without requiring a homogenous cell distribution. This technique utilizes time-lapse imaging of primary, unperturbed trunk NCCs inside a modified Zigmond chamber (a standard Zigmond chamber is described elsewhere10). By exposing trunk NCCs at the periphery of the culture to a chemotactant gradient that is perpendicular to their predicted natural directionality, alterations in migratory polarity induced by the applied chemotactant gradient can be detected. This technique is inexpensive, requires the culturing of only two NT explants per replicate treatment, avoids harsh cell lifting (such as trypsinization), leaves trunk NCCs in a more similar distribution to in vivo conditions, cuts down the amount of time between explantation and experimentation (which likely reduces the risk of differentiation), and allows time-lapse evaluation of numerous migratory characteristics.  相似文献   

18.
Cell migration is essential for proper development of numerous structures derived from embryonic neural crest cells (NCCs). Although the migratory pathways of NCCs have been determined, the molecular mechanisms regulating NCC motility remain unclear. NCC migration is integrin dependent, and recent work has shown that surface expression levels of particular integrin alpha subunits are important determinants of NCC motility in vitro. Here, we provide evidence that rapid cranial NCC motility on laminin requires integrin recycling. NCCs showed both ligand- and receptor-specific integrin regulation in vitro. On laminin, NCCs accumulated internalized laminin but not fibronectin receptors over 20 min, whereas on fibronectin neither type of receptor accumulated internally beyond 2 min. Internalized laminin receptors colocalized with receptor recycling vesicles and were subsequently recycled back to the cell surface. Blocking receptor recycling with bafilomycin A inhibited NCC motility on laminin, indicating that substratum-dependent integrin recycling is essential for rapid cranial neural crest migration.  相似文献   

19.
Parrots have developed unique jaw muscles in their evolutionary history. The M. pseudomasseter, which completely covers the lateral side of the jugal bar, is regarded as a jaw muscle unique to parrots. In a previous study, I presented a hypothesis on the relevance of modifications in the regulation of cranial neural crest cell (NCC) development to the generation of this novel jaw muscle based on histological analyses (Tokita [2004] J Morphol 259:69-81). In the present study, I investigated distribution and migration patterns of cranial neural crest cells (NCCs) through parrot embryogenesis with immunohistochemical techniques to further understand the role of cranial NCCs in the evolution of the M. pseudomasseter, and to provide new information on the relative plasticity in cranial NCC migration at early stages of avian development. The basic nature of cranial NCC development was mostly conserved between chick and parrot. In both, cranial NCCs migrated from the dorsal tip of the neural tube in a ventral direction. Three major populations were identified in their cranial NCCs. Migration pathways of these cells were almost identical between chick and parrot. The principal difference was seen in the relative timing of cranial NCC migration. In the parrot, cranial NCC migration into the first pharyngeal arch was more advanced than in the chick at early stages of development. Such a temporal shift in cranial NCC migration might influence architectural patterning of parrot jaw muscles that generates new muscle like M. pseudomasseter.  相似文献   

20.
Etchevers H 《Nature protocols》2011,6(10):1568-1577
A highly enriched population of neural crest cells (NCCs) from amniote embryos, such as from chicks, mice and humans, is desirable for experiments in fate determination. NCCs are also useful for testing the functional effects of molecular changes underlying numerous human diseases of neural crest derivatives and for investigating their potential for therapeutic compensation. This protocol details embryonic microdissection followed by neural tube explantation. Conditions favoring NCC expansion and the maintenance of their stem cell-like properties are described. Although neural crest-like cells can be derived from a number of sites in the mature organism, full potential is best ensured by their purification from their source tissue at the outset of migration. Going from embryo to established cell line takes 4 d; the first is the most labor-intensive day, but minimal intervention is required thereafter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号